引論:我們為您整理了13篇航空航天的關系范文,供您借鑒以豐富您的創作。它們是您寫作時的寶貴資源,期望它們能夠激發您的創作靈感,讓您的文章更具深度。
篇1
一、航空航天主題教育的內涵
高校大學生主題教育活動是“推進校園文化建設的強大動力【1】”。對于航空類高校來說,航空航天主題教育是特色教育活動。航空航天主題教育是以航空航天為教育為主要內容,以弘揚航空航天精神為導向,采取集中觀看、主題座談、主題征文、知識競賽、科普教育等形式對大學生開展的主題性教育活動。它是情境教育中的一種方式,航空類院校學生活動中較為常見。旨在使大學生在以航空航天為主要內容的情境中,接受教育,蕩滌心靈,建立以情境為導向的感性認識,以此內化為成長成才的內在動力,達到引領積極向上的自我教育的目的。航空航天主題教育具有主題性、內化性和實效性等鮮明特征。
二、學生學風建設的內涵
學生學風,從廣義上講就是大學生在治學精神、治學態度和治學方法等方面的風格,也是大學生的知、情、意、行在學習問題上的綜合表現。學風建設就是從教、學、管三方面入手,以提升教師教學水平、激發學生的學習主動性和加強學生日常管理等為切入點,在外在教育和內在激勵兩方面雙管齊下,加強和改進學風的系列舉措。學生的天職是學習,學風建設旨在改變的是學生的學習狀態,激發的是成才意識。學風建設同樣具有主題性、內化性和實效性等鮮明特征,這與航空航天主題教育基本相同。
三、航空航天主題教育與學風建設的辯證關系
航空航天主題教育和學風建設,兩者不是獨立的,而是互相作用、互相補充的。作為一種主題活動方式,航空航天主題教育為學風建設營造有利氛圍,發揮情境育人的內化作用。另一方面,航空航天主題也能從更大程度上激發學生愛校愛專業的熱情,從而為學風建設提供原始動力源泉。作為航空類高校的一項重點工作,學風建設將為航空航天主題教育提供必要的思想保障。對于航空類院校的學生來講,只要認識到了學習的重要性,以積極地態度參與到學習當中,必然有利于航空航天主題教育活動的有效開展。
1.航空航天主題教育為學風建設提供環境條件
航空航天主題教育作為情境教育的一種方式,必然通過營造良好的環境氛圍來內化人的心靈,達到認同教育效果的最終目的。比如開展集中觀看神舟九號發射等活動,基于發射活動本身再加上活動氛圍的營造,勢必將激發學生的愛國熱情,并形成持久的激勵作用。從中可以看出,氛圍營造的作用是無窮的。學生深感航空航天事業的迅猛發展直接來源于祖國科技的強大,對學習、對理想、對成才的追求也就更加地強烈,這就是情境育人的作用所在。作為校園文化的一部分,航空航天主題教育必然為學風建設提供必要的環境條件。通過主題教育活動,逐步引導學生把“個人理想融入到建設社會主義現代化共同理想【2】”中, 以此強化理想信念教育,對學生建設具有重要的推動作用。
2.航空航天主題教育為學風建設激發興趣動力
對專業的認同是提升學風興趣的關鍵所在。對于航空院校的學生來講,有些學生所錄取的專業并非是第一志愿專業,有的甚至是參考專業。其中一部分學生為調劑錄取。這些學生的專業認同感是不強的,或多或少的對專業認識不清,就業方向不明確。上述緣由使這些學生或多或少失去了學習的興趣和動力,更談不上具有成長成才意識。主題教育必須與群體特征相互適應【3】,對航空類院校的學生開展航空航天主題教育,將更有效地激發學生愛校愛專業的熱情,從而激發出原始的學習動力,增強學習的針對性和實效性。航空類高校可根據學生工作現狀,適時組建航空航天科普宣傳團隊和未來飛行器設計團隊。前一團隊是面向中小學生源基地,組織學生團隊到學校開展航空航天科普教育,發揮學生的專業優勢,增強學習專業的信心和動力。后一團隊是組隊參加校級或省部級以上的未來飛行器設計大賽,培養學生的專業實踐能力。類似于上述活動的開展勢必使學生增強對專業的正確認識,以切身行動投入到活動中,學習的動力更足了。
3.學風建設為航空航天主題教育奠定思想保障
對于初到大學的學生而言,剛剛完成由高中到大學的轉變,身雖已到大學,但心卻還在高中,思想的轉變需要一段時間的適應。生活上的不適應,學習方式上的差別,是剛入學的新生所面臨的首要問題。在這當中,也定會產生一定的心理落差。因此,對于剛入學學生的學風建設來講,首先應解決思想認識上的問題。采取切實可行的方法和舉措,讓學生主動去接觸新生事物,去學會適應新的環境和學習方式,應該說是學風建設的首要任務。思想問題解決了,態度端正了,學習也就主動了。其實對于學風建設整個工作,思想認識應該是根本問題。誤區的糾正為自主學習清除了不利障礙,也為學生培養綜合素養及航空航天情結提供了思想準備。打消了思想顧慮,學生也就愿意去思考自己的專業以及與專業相關的問題也更愿意投入到航空航天主題教育活動中去。
4.學風建設為航空航天主題教育提供方法指導
學風建設的基本方法對于航空航天主題教育活動的開展具有重要的借鑒意義。從一般意義上講,學風建設的基本方法和策略有主題教育、結對對接、興趣引領、動力激發等。如此的策略和方法也同樣適用于主題教育,為之提供方法上的指導。主題教育是航空航天教育的常用方式,結對對接可以用在開展學生科研實習活動中,興趣引領和動力激發是學風建設和航空航天教育的通用策略。
四、結論
學風建設是高校學生工作的永恒主題,在實際的工作中,我們必須正確處理好學風建設與航空航天主題教育的辯證關系,發揮彼此的促進作用,為做好人才培養工作提供必要條件。在理順好兩者的辯證關系后,如何利用這種辯證關系并實現兩者有效嫁接是個關鍵性問題。
參考文獻:
1.王貴鋒、徐忠杰、胡國慶. 《大學生主題教育活動及其品牌化研究》.《職教探索》,2012.11.
2.白義香.《大學生主題教育活動模式的探討》.《湘潮》,2007.9.
篇2
技術溢出(Technology Spillover)是指先進技術擁有者在從事生產、貿易或其他經濟行為時,有意識或無意識地輸出技術而引起的技術水平的提高[1]。航空航天業的技術溢出則指航空航天業的先進技術通過一定渠道自愿或非自愿地傳播到其他工業領域,進而帶動這些工業領域技術水平的整體提升。航空航天業是我國戰略性高技術產業,屬于技術密集型行業,技術裝備多、投資費用大,是國家經濟實力與科技水平的綜合體現。自20世紀50年代以來,我國航空航天業經歷了從無到有、從小到大的發展歷程,逐步建立起平臺化、系統化、專業化的研發與應用體系。它技術內涵高、產業鏈長、輻射面寬、連帶效應強,對眾多高技術產業以及傳統產業的發展起到了舉足輕重的拉動作用。研究表明,內涵科技因素越高的行業部門對其他部門的貢獻效應越大[2]。航空航天技術是高科技領域的前沿,航空航天業必然對其他部門具有較大的貢獻效應,其技術溢出也應該是顯著的,本文正是基于這一前提條件進行的研究。因此,探究影響航空航天工業技術溢出的顯著性因素,充分利用其技術溢出作用,對于加快我國科技進步與經濟發展有著重要的戰略意義。然而,目前對此問題的研究并不深入,多數學者從理論層面分析技術溢出的問題,也有學者較為系統地對技術溢出是否存在、影響技術溢出的因素以及技術溢出的機理進行了實證分析,但這些研究都局限于外商直接投資(FDI)這一領域,沒有從行業層面上分析該行業部門對其他行業部門的技術溢出,并且沒有在理論上形成統一的認識。本文利用我國航空航天業的數據,采用因子分析的方法,提取影響技術溢出的關鍵因素,進而對促進我國航空航天業技術溢出及產業自身發展提供理論支持與政策建議。
影響技術溢出的因素有很多,根據現有文獻的研究將其大致歸納為:(1)人力資本因素。Keller(1996)研究發現人力資本積累的差距導致技術吸收效果與經濟增長率的不同[3];Borensztein等(1998)認為人力資本存量是影響技術溢出效應的關鍵因素[4];王成岐,張建華,安輝(2002)得出人力資本存量與技術溢出效應不相關的結論,但他們認為人力資本投入以及人才素質是技術溢出的影響因素[5]。(2)技術差距因素。Findlay(1978)和Wang and Blomstorm(1992)的研究表明技術差距越大示范模仿空間越大,吸收技術溢出的潛力也就越大[6];Kokko(1994)的研究發現低技術水平嚴重阻礙技術溢出效應的產生[7];Perez(1997)從吸收能力角度考慮,認為過高的技術差距會影響示范模仿機制發揮其應有作用。(3)經濟開放程度。Blomstorm and Sjoholm(1999)、認為經濟開放度高的企業由于競爭壓力大而進行更多的研發投入以提高自身吸收能力[8];Kokko(1994)發現經濟開放程度與技術溢出效應之間的關系是不確定的[7];包群,許和連,賴明勇(2003)用出口依存度等來衡量經濟的開放程度,發現我國經濟開放程度的提高、基礎設施的建立與完善等都是促進技術溢出的有利因素[9]。(4)研發投入因素。Kathuria(2000)指出技術溢出效應并非自動產生,技術吸收方要想從中獲利,須對學習活動進行投資;田慧芳(2004)的研究則表明工業部門研發投入水平與技術溢出效應呈負相關關系。此外,市場結構、工資水平、產業關聯、基礎設施、經濟政策等都作為影響因素引入了技術溢出的相關研究中,本文在前人研究的基礎之上對此進行探討。
二、指標構建與分析方法
目前,對技術溢出進行實證研究時,學者們通常首先選擇一個影響因素,然后確定與該影響因素內容相關的指標體系,最后采用一定的計量方法(如多元回歸、分組回歸等)來分析這些指標。本文在分析技術溢出時,也采用了這種研究思路:選取航空航天業為研究對象,根據技術差距等影響因素建立與之相關的量化指標體系,采用因子分析的方法對這些指標與技術溢出之間的關系進行研究,并用線性回歸的方法對提取出的公因子進行顯著性檢驗。
(一)技術溢出指標體系
航空航天業是一個以現代科學為基礎的高新技術產業,包括機、光、電、液綜合能力的精密機械加工工業,是我國國民經濟和國防建設的重要組成部分[10]。其研發成本高、風險大、周期長,具有科技含量高、連帶效應強的產業特點,能夠帶動諸多產業的發展。理論上講,研究技術溢出影響因素需要建立一套完整的指標體系,但為了避免信息重疊,本文根據國內外現有文獻的研究成果并綜合考慮我國航空航天業技術溢出的實際情況,選取如下表所示指標體系:
(二)分析方法和數據來源
因子分析是一種研究從變量群中找出共性因子的統計技術,它通過分析眾多變量之間的依賴關系,探尋觀測樣本的內部基本結構,提取并描述隱藏在一組顯性變量中無法直接測量的隱性變量,很好地發揮了降維和簡化數據的作用。因子分析中的共性因子是不可直接被觀測卻又客觀存在的重要影響因素,每一個變量都可以表示為共性因子的線性函數與特殊因子之和,即,式中為的共性因子,為的特殊因子。若滿足以下條件:(1);(2),即共性因子和特殊因子不相關;(3)各共性因子不相關且方差為1;(4)各特殊因子不相關且方差不要求相等。那么,每個變量可由個共性因子和自身對應的特殊因子線性表出,因子分析的數學模型可表示為:
本文采用因子分析和線性回歸相結合的方法,研究我國航空航天業技術溢出問題。用于分析的數據主要來源于《中國高技術產業統計年鑒》(1999~ 2009)中航空航天業相關數據,以及《中國統計年鑒》(1999~2009)中工業企業相關數據,統計口徑為我國國有及規模以上非國有工業企業。
三、技術溢出實證研究
(一)因子分析
從《中國高技術產業統計年鑒》(1999~2009)與《中國統計年鑒》(1999~2009)整理出構建量化指標體系所需數據,并按定義計算出各指標對應值,如下表所示:
利用SPSS17.0軟件做出相關系數矩陣,通過指標之間的相關系數初步判斷各指標相關性較高。從已建立的量化指標體系中提取公共因子,找出影響我國航空航天業技術溢出的主要因素。因子矩陣和旋轉因子矩陣如表3、表4所示:
由表3、表4可知,旋轉后公共因子F1、F2的方差貢獻率分別為4.803和2.795,累積方差貢獻率為84.424%,進一步判斷公共因子F1、F2能夠代表本文所設計的衡量我國航空航天業技術溢出的量化指標體系。由表4還可知公共因子F1在X1、X2、X3、X4、X5的載荷值均大于0.7,能夠反映我國航空航天業科技活動經費投入能力、研發經費投入能力、新產品研發經費投入能力、科技活動人員投入能力以及科學家與工程師投入能力,因此可將F1視為影響航空航天業技術溢出的因素之一――技術投入能力;公共因子F2在X6、X7、X8、X9的載荷值均大于0.65,能夠反映我國航空航天業的新產品銷售收入、新產品出口能力、新產品勞動生產率以及新產品產值比重,因此可將F2視為影響航空航天業技術溢出的因素之二――技術產出能力。
(二)線性回歸
本文根據該檢驗模型,以公共因子F1、F2的因子得分作為自變量,以其他工業企業的全員勞動生產率LP作為因變量(具體數據見表5),構建如下回歸模型:
(1)
其中LP即除航空航天業之外的其他工業企業的全員勞動生產率,是全國國有及規模以上非國有工業企業增加值與我國航空航天企業增加值的差值同全國國有及規模以上非國有工業企業全部從業人員年平均人數與我國航空航天企業從業人員年均人數差值之比。其計算公式為:
全員勞動生產率=工業增加值/全部從業人員平均人數(2)
通過回歸得到人均產出變量與公因子變量之間的關系方程為:
(3)
t值:(6.240)(2.886) ( 3.320)
P值: 0.001 0.028 0.016
R2=0.749AdjR2=0.666F=8.967
由模型估計到的參數可知,我國航空航天業的技術投入能力以及技術產出能力與其他工業企業的全員勞動生產率均存在著顯著的正相關關系,技術投入能力的因子得分每提高1%,其他工業企業的全員勞動生產率將上升17.541%,技術產出能力的因子得分每提高1%,其他工業企業的全員勞動生產率將上升15.9%。
四、結果分析與政策建議
航空航天業是我國國民經濟的先導產業,在人才、資金、技術等方面都有著相當大的優勢,產業結構具有一定的特殊性,技術溢出也不同于其他產業。因此,本文在參照前人研究成果與研究方法的基礎上,構建了一個衡量技術溢出的量化指標體系,采用因子分析的方法從中提取出最為顯著和最具代表性的兩個因素,即航空航天業的技術投入能力及技術產出能力。科學分析這些影響因素,有效利用技術溢出效應,有利于提升傳統產業的自主創新能力、推動國家整體技術進步。對此,提出如下建議:
篇3
一、研究背景
國防科技工業是我國戰略性支柱產業,是國防現代化重要的物質技術基礎,是經濟社會發展和科技進步的首要推動力量。近年來,政府在國防科技工業與地方經濟融合發展的機制建設上進行了大膽的探索和實踐,取得了顯著的成效。在國防科技工業與地方經濟融合發展已經成為時代主題的背景之下,著力研究二者之間的關聯互動對于深度軍民融合及區域經濟良性加速發展具有重要的意義。
陜西省是我國重要的國防科技工業發展基地,擁有雄厚的科研實力和高新技術產業基礎,軍民融合產業的發展具有一定的代表性。其國防科研生產橫跨航空、航天、兵器、電子、船舶、核等六大行業,航空航天制造業是發展最為顯著的。目前,陜西省航空航天制造業擁有30余家工業企業,40家科研機構,近8萬從業人員,7千多研發人員,以及超過25億元的資產總額。并通過資源整合大力建設了西安兵器工業科技產業基地、西安船舶科技產業園、西安閻良國家航空高技術產業基地、西安國家民用航天產業基地、西北工業技術研究院,形成“三基地一園區一院”的發展格局。
二、實證分析
本文采用計量經濟學中的協整檢驗、Granger因果關系檢驗對陜西省航空航天制造業與地方經濟發展之間的關聯關系進行定量分析。
(一)指標選取與數據處理
本文所選用的數據樣本為1996―2011年的年度數據,數據來源于2013年《陜西省統計年鑒》與《中國高技術產業統計年鑒》。
選用國內生產總值GDP、航空航天制造業總產值AMO分別作為陜西省地方經濟發展狀況以及航空航天制造業發展的衡量指標,航空航天制造業固定資產投資額FAI代表其在基本建設的投入指標,新產品產值NPO代表在科研技術方面的投入指標,然后對陜西省航空航天制造業總產值AMO、固定資產投資額FAI、新產品產值NPO與陜西省GDP之間的互動關系展開研究。
為剔除價格波動的不利影響,首先運用GDP指數、固定資產投資價格指數以及航空航天器出廠價格指數對GDP、FAI以及AMO、NPO的原始數據分別處理,使之成為以1996年為基期價格計算的可比數據。為了避免異方差的影響,對這4個時間序列數據進行取對數運算,分別記為LnGDP、LnAMO、LnFAI、LnNPO,具體數據(見下頁表1)。本研究利用Eviews6.0軟件進行相關計算分析。
(二)單位根檢驗
時間序列分析中的首要問題是關于時間序列數據的平穩性研究,平穩性是指時間序列的統計規律不會隨時間的推移而發生變動的一種性質。本文基于ADF單位根檢驗法,對變量LnGDP、LnAMO、LnFAI、LnNPO以及它們的一階差分序列進行平穩性檢驗。檢驗結果(見下頁表2)。
從下頁表2可以得知,LnGDP、LnAMO、LnFAI、LnNPO 4個變量在原水平下其ADF值均大于各顯著性水平下的臨界值,故為非平穩變量。經過一階差分以后,新序列DLnGDP、DLnAMO、DLnFAI、DLnNPO在5%的顯著水平之下,其ADF值均小于各顯著性水平下的臨界值,4個變量數據均為平穩性數據。基于此可以判定,序列LnGDP、LnAMO、LnFAI、LnNPO均為一階單整序列,可以進行接下來的協整檢驗。
(三)協整檢驗
協整是對非平穩經濟變量長期均衡關系的統計描述,顧名思義,協整關系則是指非平穩經濟變量之間存在的長期穩定的均衡關系。本文使用E―G兩步檢驗法對變量間的協整關系進行檢驗。
1.航空航天制造業總產值AMO與GDP之間的協整檢驗。基于“兩步檢驗法”的思想,對一組變量之間是否存在協整關系進行檢驗,其與回歸方程的殘差序列是否是一個平穩序列的檢驗是相同的。因此,下面采用最小二乘法對變量LnGDP與LnAMO進行回歸估計,可以得到:
從上述統計指標判斷,Prob值都在0.000,顯然小于5%的顯著性水平,表明模型回歸的系數非常顯著;F值為1 006.313,相應的概率值為0.000,因此可以拒絕模型整體解釋變量系數為零的原假設,模型的整體擬合情況良好;R方和調整R方都在98%以上,說明該模型整體上擬合得非常好;DW值為0.99,LM檢驗表明殘差序列不存在序列相關。
通過ADF檢驗法對殘差序列u進行平穩性檢驗,檢驗結果(見下頁表3)。
通過下頁表3的檢驗結果可以看到,回歸方程(1)的殘差序列ADF檢驗值小于5%的顯著性水平下的臨界值,因此認為該殘差序列是平穩的。
基于協整檢驗的思想,本文認為LnAMO與LnGDP之間存在協整關系,方程(1)為LnAMO與LnGDP之間的協整方程。而前文對原始數據進行了取對數運算,故回歸方程的系數代表了彈性的概念。因此,通過協整方程系數表明,如果陜西省航空航天制造業總產值增加1%,陜西省GDP增加0.82%。
2.航空航天制造業新產品產值NPO與GDP之間的協整檢驗。對陜西省航空航天制造業新產品產值和陜西省GDP之間的協整關系進行檢驗。得到回歸方程如下:
通過相關統計指標判斷我們可以得知,此回歸方程具有較好的擬合程度,而且,方程各系數和方程整體均具有顯著性。LM檢驗表明,殘差序列也不存在序列相關。
用ADF檢驗法對殘差序列u進行平穩性檢驗,檢驗結果(見表4)。
通過表4中的ADF檢驗結果表明,回歸方程(2)的殘差序列ADF檢驗值小于10%的顯著性水平下的臨界值,因此可以說該殘差序列是平穩的。
根據協整檢驗的觀點,可以認為LnNPO與LnGDP之間存在協整關系,方程(2)為LnNPO與LnGDP之間的協整方程。協整方程系數表明,如果陜西省航空航天制造業新產品產值增加1%,陜西省GDP則增加0.59%。
3.航空航天制造業固定資產投資額FAI與GDP之間的協整檢驗。同理,對陜西省航空航天制造業固定資產投資額與陜西省GDP之間的協整關系進行檢驗。回歸方程如下:
由上述統計指標可以看出,方程擬合效果較差,方程整體和方程系數都不具有顯著性,而且LM檢驗表明殘差序列存在2階自相關。
用ADF檢驗法對殘差序列u進行平穩性檢驗,檢驗結果(見表5)。
表5的ADF檢驗結果表明,回歸方程(3)的殘差序列的ADF檢驗值大于顯著性水平10%下的臨界值,因此接受原假設,認為該殘差序列是一個非平穩序列。
根據協整檢驗的思想認為LnFAI與LnGDP之間不存在協整關系。
(四)Granger因果關系檢驗
采用協整檢驗,只是對變量間是否具有長期均衡關系進行了相關檢驗,而其對于變量間的長期均衡關系是否構成因果關系以及因果關系方向等問題,并不能給出更加合理清楚的解釋。因此,本文采用Granger因果關系檢驗進一步檢驗變量間的因果關系。
1.航空航天制造業總產值AMO與GDP之間的Granger因果關系檢驗。由于LnAMO與LnGDP之間存在協整關系,我們使用水平值對其因果關系進行考察。然而,滯后階數對Granger因果關系檢驗結果具有顯著的影響,若滯后階數不同,則所得因果關系也會具有差異性。因此,在實際操作中,通過利用較多的滯后階數進行多次檢驗,將會獲得更為全面合理的結果。
選擇滯后階數從1~4,對倆變量進行Granger因果關系檢驗,檢驗結果(見下頁表6)。
下頁表6顯示,當滯后1期時,拒絕原假設,LnAMO與LnGDP之間互為Granger因果原因;當滯后階數為2階時,存在單向Granger因果關系(由LnGDP到LnAMO);當滯后階數為3階時,存在單向Granger因果關系(LnAMO到LnGDP);而在滯后期為4階時,二者之間不存在任何方向上的Granger因果關系。不難看出,在較短時期內,主要存在的是單向Granger因果關系(由地方經濟增長到航空航天制造業總產值增長);而在滯后3期時,存在反向Granger因果關系(由航空航天制造業總產值增長到地方經濟增長)。
2.航空航天制造業新產品產值NPO與GDP之間的Granger因果關系檢驗。鑒于LnNPO與LnGDP之間也存在協整關系,因此使用水平數值對其進行Granger因果關系檢驗,檢驗結果(見下頁表7)。
由下頁表7可以看出,在滯后期數從1~4時,均存在由LnNPO到LnGDP的單向Granger因果關系,說明在滯后四期的時間內,都存在由航空航天制造業新產品產值增長到地方經濟增長的單向Granger因果關系。
3.航空航天制造業固定資產投資額FAI與GDP之間的Granger因果關系檢驗。由于LnFAI與LnGDP之間不存在協整關系,因此,根據Granger因果關系檢驗對數據平穩性的要求,需要對平穩序列進行差分之后再進行檢驗,檢驗結果(見下頁表8)。
由表8可以看出,在滯后期數從1~4時,LnFAI與LnGDP之間均不存在任何方向上的Granger因果關系。且差分后的數據,表示了變量在前后年份之間的波動,因此這一檢驗結果可以解釋為,陜西省航空航天制造業固定資產投資額波動與陜西省GDP波動之間在滯后四年的時間內都不存在任何方向上的Granger因果關系。
三、研究結論
通過上述實證分析,本文主要得出以下幾點結論:(1)陜西省航空航天制造業總產值以及新產品產值與地方經濟發展之間,已經建立起了長期平穩的均衡關系,且二者彈性系數分別為0.82和0.59,而固定資產投資額與地方經濟發展之間還未形成平穩的均衡關系。(2)陜西省航空航天制造業總產值對地方經濟發展的驅動作用,在時間上仍然存在一定的滯后。新產品產值很好地帶動了地方經濟的發展,但地方經濟的發展卻并未形成促進航空航天制造業新產品產值增加的原因。總體上看,二者之間未形成良好的互動反饋機制。固定資產投資額與地方經濟發展之間也尚未形成良好的互動關系。
四、政策建議
基于上述分析及結論,為了深入推行陜西省航空航天制造業與地方經濟的融合發展,本文特提出以下幾點建議:(1)重點扶持優秀的航空航天制造業企業推行股份制改革和分批上市。大力推動企業建立現代企業制度和現代產權制度,并通過積極引入多元化的投資主體,增強企業的內在活力和自我發展的動力,且以上市企業為產業發展平臺,加快航空航天制造業的發展步伐。(2)完善科研機制建設,提高軍民融合產業科技成果的轉化效率。通過加深軍工與民用企業之間相互合作,不僅對國防科技工業運行效率得到了提升,而且與地方經濟的融合發展得以更好地推動,“軍民結合”的國防科技工業體系被更好地建立。(3)政府應該繼續推動產學研合作,加大科技創新的力度,并通過增加對高校、科研院所的投資等方式,加速并提高了科研成果的開發利用。與此同時,科技人員的配置效率需要進一步提高,人員培訓力度需要進一步加大,進而來保證企業可持續性的創新能力。(4)努力探索本地區其他產業的支撐。例如,本地其他產業部門在資金、技術、人力、物力上給予支持幫助,及對國防科技產業管理創新提供的意見等,所以應大力促進區域產業部門發展的良性互動,進一步推動航空航天制造業的長足發展。
參考文獻:
[1] 張曉峒.計量經濟學基礎:第3版[M].天津:南開大學出版社,2007.
[2] 李國柱,劉德智.計量經濟學實驗教程[M].北京:中國經濟出版社,2010.
[3] 張近樂,李玉芬.陜西省航空航天制造業與地方經濟發展關聯度實證研究[J].西北工業大學學報:社會科學版,2011,(3):19-24.
[4] 張近樂,易晨晨.比較視閾下陜西省航空航天制造業貢獻度分析――基于區位商及 VAR 模型[J].科技進步與對策,2014,(9):44-50.
[5] 劉敏.軍民融合高技術產業創新體系建設研究――以陜西省為例[J].科技進步與對策,2012,(23):73-77.
[6] 董潔,游亞楠.中國航空航天制造業國際競爭力實證分析[J].科技進步與對策,2012,(2):55-58.
[7] 王育寶,吳狄.陜西省高新技術優勢產業選擇與競爭力分析――基于偏離一份額分析法[J].科技管理研究,2009,(12):218-221.
篇4
記:淮陰中學為什么會選擇航空航天作為建設特色課程基地的方向?
張:這個想法最早形成于2011年。當時江蘇省教育廳提出支持各高中學校建設具有自身特色的課程基地。我們考慮了很久,最初也曾想過其他方向,但都覺得特色不夠鮮明。經過廣泛論證,我們認為航空航天是一個值得關注的方向。原因很簡單,航空航天既凝結了人類最先進的科技成果,又有著悠久的歷史脈絡,它是人類對行夢想不斷求索的結果,也是一個國家科技實力的集中體現。除此以外,我們更看重飛行這一活動本身所凝聚的探索精神和求知信念,飛行充滿風險和變數,而人類正是通過科技的不斷進步在逐步消除其中的風險,使其成為一種服務于人類的可靠技術。淮陰中學與南京航空航天大學素來有著密切的合作關系,這也是我們建設航空航天特色課程基地的有利條件。正是出于這一想法,我們將航空航天作為特色課程基地建設方向申報了上去。
記:建設這樣的課程基地,其實在硬件和軟件上都有非常高的要求,淮陰中學選擇這樣的方向,當初是否考慮過其中的困難?
張:當然考慮過。這一點不僅我們自己早已認識到,江蘇省教育部門負責評審各校申報特色課程基地項目的專家組也有所考慮。最初我們申報時,一些專家認為,一所中學要建立這樣的課程基地,很難做到高水準,因為這要花費大量的人力物力,并且短期內很難看到建設成效。但經過我們的不懈努力,淮陰中學的航空航天特色課程基地建設很快初具規模,在2013年的成果評審中,被評為全省10個優秀課程基地之一(全省第一批共計38個課程基地),并把省課程基地建設現場會議放在我校召開。這說明,我們的方向是正確的,我們的建設方法也是正確的。在建設過程中,我們在航空航天科技館上花費了大量心血,不僅聘請了兩位專業素養很高的專職科普教師任職,還籌措了700余萬資金,用于置辦各項陳列品,在展館的設計上也獨具匠心,整個展館的參觀脈絡是從模擬的機場起飛線開始,經歷人類航空史的各個階段,最終到著陸區結束,在展館最后的外部廊道上,繪制了廣袤的星空壁畫,寓意人類的星際探索之夢永無止境。所有參觀展館的學生都表現出濃厚的興趣,他們真的樂在其中。除了這個展館,我們學校的圖書館也專門開辟了航空航天類圖書專區,學校每年撥款,有選擇地購買優秀航空航天科普圖書,當然也包括全套的《航空知識》,這些圖書豐富了學生們系統學習相關知識的資源。
記:淮陰中學建設航空航天特色課程基地的宗旨是怎樣的?
張:我們的原則是,要么不建,要么就建設成高標準的課程基地。我們當然可以降低標準,這樣省錢省力,但學生們從中獲取的東西就很有限,比如他們就沒有機會親自體驗更專業的飛行模擬器,沒有機會近距離看到這么多珍貴的航空用品乃至文物,更談不上互動式和體驗式學習。如果那樣,他們獲取知識的方式就很難與傳統的書本和網絡方式有所區別,特色課程建設就難以做到可持續發展。需要強調的是,花錢多少并不是標準高低的評判依據,你看到包括科技館在內的整個特色課程基地的建設,我們都是花了許多心思的,在策劃方案上更是反復論證,廣泛聽取專業人士和學生們的意見,再加上精心組織實施,才有今天這個局面。我們就是要讓學生看到真正的特色,體驗到別處難以獲得的感受,享受整個學習的過程。
記:學生們在特色課程基地學習航空航天科技知識,勢必要占用一定的時間和精力,如何來處理它與課業之間的關系呢?
張:這是一個非常重要的問題,我們從一開始就有所考慮。現在淮陰中學的做法是,面向全校學生開展的航空航天科普教育屬于基本層次,主要是激發學生們對航空航天的關注與熱情,普及一般的知識,占用時間不多。再往上就是航空航天社團,這個社團開展的教育更為深入和全面,但要加入社團,對基本課業成績就有個要求,課業不構成負擔的學生才可望加入社團,而且加入社團后我們要求成績要保持穩定。當然,這也不是鐵律,有些熱情特別高但成績稍差的學生,我們也會允許暫時加入,并對他們進行指導和督促,促使學生們的學習成績同步進步。結果,所有加入航空航天社團的學生,課業成績全部成上升態勢,這正是我們希望看到的。
記:現在提倡素質教育,您如何看待航空航天科普教育與素質教育的關系?
張:淮陰中學多年來積極深化素質教育,努力追求把高考成績作為素質教育的自然結果。我們得承認,現行高考選拔制度是有缺陷的,不夠科學合理,既有一考定終身的弊端,也有考核片面的局限,但改革是個長期問題,現行高考制度的存續,反而越發迫切地要求素質教育水平和質量快速跟進。有人把素質教育理解為某些技能的培養,我覺得不夠全面,我更愿意把素質教育理解為一種精神內涵的培養,這種精神包含的元素更為豐富,比如學習精神、探索精神、協作精神,以及挫折耐受力等等,這些精神才是學生成長道路上最可寶貴的財富,也是學習各種技能的內在動力。
篇5
1 力學在航空航天領域的支柱地位
作為與材料科學、能源科學并肩的航空航天領域三大基礎學科之一,力學在航空航天領域擁有無可辯駁的支柱地位。航空航天技術的發展與力學學科的發展有著舉足輕重的關系。同樣,力學學科的發展也推動了航空航天技術的發展。從航空航天的歷史開端,力學便扮演著開天辟地的角色:萊特兄弟發明飛機前的時代,人類的航空器長期停留在熱氣球與飛艇的水平,人們普遍認為任何總密度比空氣重的航空器是無法上天的;而隨著流體力學的發展,越來越多總密度大于空氣的航空器被發明出來進行試驗,而萊特兄弟的飛機即為第一個成功的嘗試,萊特兄弟的L洞也成為一個經典(圖1)。從此,航空器的發展步入了快車道,各種結構的飛機翱翔于藍天,從不到一噸的輕型飛機到上百噸的運輸機,直至今天我們對機已經習以為常。
時至今日,航空航天的總體設計已由龐大的力學各分支支撐起來,從最基本的方面分類,可包括:飛行器整體氣動外形歸屬于空氣動力學;整體支承結構歸屬于結構力學以及材料力學;復合材料歸屬于復合材料力學;材料疲勞性能歸屬于疲勞分析;結構動力特性歸屬于振動力學;缺陷結構分析歸屬于損傷力學以及斷裂力學。而對于具體的問題細分,則還有如:針對超高速飛行器的高超空氣動力學;針對紊流等大氣不穩定情況的非定常空氣動力學;針對流固耦合問題的氣動彈性力學;以及針對非金屬材料的粘彈性力學等。此外,還有眾多與力學相關的技術被發展起來,如有限元技術(FEM)等。
展望未來,力學發展的源動力在于航空航天綜合多學科的交叉與技術。被譽為“工業之花”的航空航天工業,其研發生產涵蓋了目前已知的所有工科門類,如此多的學科交叉下,力學的發展勢必會與其他學科進行技術交流,這會帶來問題的進一步復雜化,同時也豐富了力學的研究內容。
2 航空航天領域力學發展新挑戰
航空航天的發展,給力學帶來了新的挑戰。結構的日趨復雜,給力學計算帶來困難;繁瑣的理論公式,需根據工程需要進行必須的簡化;新材料的應用在航空航天領域最為敏感,在為飛行器降低結構重量的同時,也帶來諸多的不利因素如耐熱性能差、環境敏感度高等;而在某些關鍵部件的多物理場耦合問題也將成為重要的研究方向。
2.1 程序化
航空航天器和大型空間柔性結構的分析規模往往高達數萬個結點、近十萬個自由度的計算量級,這些問題包括但不限于:飛行器的高速碰撞間題,如飛機的鳥撞, 墜撞,包容發動機的葉片與機匣設計,裝甲的設計與分析,載人飛船在著陸或濺落時的撞擊等。為了解決這種計算量龐大的問題,上世紀50年代初,力學便發展出一門嶄新的分支學科――計算力學。伴隨著電子計算機以及有限元技術的發展,計算力學取得輝煌的成績,這也說明了其本身發展潛力巨大。
力學分析技術的發展,特別是對于各種非線性問題(幾何非線性、材料非線性、接觸問題等)分析能力,是長期存在的。然而在很長一段時間內,受到計算機能力的制約,以及模型建立本身的局限性,力學分析求解停留在解析方法和小規模數值算法中。這對于工程人員的設計工作是一個極大的限制,對于航空航天領域而言則尤甚如此。計算力學的發展,帶來的效益是巨大的。首先其可以用計算機數值模擬一些常規的驗證性試驗和小部分研究型試驗,這可以節省很大一筆試驗費用。其次,其可以求解某些逆問題,逆問題的理論解往往無法通過非數值的手段得到。最后,從工程管理角度考慮,數值模擬方法大大節省了產品研發的周期,由此單位時間內產生了更多的經濟收益。有限無技術分析機翼見圖2。
上述計算力學給工程設計方面帶來的種種好處,都基于一個很重要的前提。那就是力學問題程序化。如何將力學問題轉化為一個計算機可以求解的程序,一直是計算力學研究的重點,比如有限元技術就是其中一個典型代表。目前,有限元技術已經涵蓋了大部分力學問題,包括:靜力學求解,動力學求解,各種非線性問題,以及多物理場耦合等。但值得注意的是,除了靜力學以及相對簡單的問題外,其余問題所用的算法目前精度仍然有限,相較于工程運用而言仍存在諸多壁壘。對于這些問題算法的更新,是力學問題程序化必須面對的挑戰,仍需研究人員不斷探索。
2.2 工程化
力學工程化依然是基于計算力學而討論的。所不同的是,程序化是針對一項力學問題能不能解決,工程化關注的問題是如何使得力學問題的解決過程更符合工程需求。
21世紀的航空航天,已經越來越趨向于商業化,美國已有數家私有航天企業成立,我國的航天科技集團也在進行著一些商業衛星發射。而商業化的工程問題,所追求的目標永遠是效益。因此,力學工程化發展也應基于這一要求。航空航天工程的研發工作,一直給人周期長的印象,動輒10年以上的研究周期,對于目前商業化的運營是不適用的。如何快速的給出解決方案,是今后力學工程化的重要考量。隨著軟件技術的發展,越來越多的數值計算可以通過可視化、圖表化等快捷的交互式設計方法呈現出結果,這可以直觀地給予工程師設計反饋,從而達到加快設計進程的目的。同時,直觀的結果反饋,也能避免數據分析過程出現人為失誤,起到規避風險的作用。
2.3 非均質化
新材料往往首先出現在航空航天領域,其中典型代表便是先進復合材料。先進復合材料具有高比強度、高比模量、耐腐蝕、耐疲勞、阻尼減震性好、破損安全性好以及性能可設計等優點。由于上述優點,先進復合材料繼鋁、鋼、鈦之后,迅速發展成四大結構材料之一,其用量成為航空航天結構的先進性標志之一。
復合材料的運用給力學提出了新要求,相比于傳統各向同性的金屬材料,其各向異性的力學特性使得非均質力學應運而生,代表便是復合材料力學的誕生。非均質化力學需要將材料的承力主方向設計為結構中的主承力方向,而非主承力方向則需要保證一定強度,不至于破壞,這是其主要的設計特點。相比各向同性材料,其理論模型更為復雜,相應的數值求解方法也沒有那么完善。同時,實際中復合材料的性能分散性和環境依賴性相當復雜, 設計準則和結構設計值的確定還很保守,導致最終設計結果并沒有理論中那么完美,很大程度上制約了工程領域大規模使用復合材料。對于國內而言,復合材料研究工作相比國外則更為落后,無論是設計經驗還是試驗數據積累都有不小差距。
建立完備的非均質化力學模型,積累足夠的原始參數,大膽嘗試提高復合材料的設計水平以及用量是今后力學非均質化的主要任務,需要研究人員付出更多的努力。
2.4 多物理場耦合
2.4.1 電磁與力學耦合
新時代下的航空航天材料,已不僅僅局限于提供簡單的支承作用,功能化是航空航天器新材料發展的重點和熱點,其最終目的是為了未來航空航天器發展智能化目標。
目前,越來越多的具有電-力耦合功能的新型材料正成為航空航天器結構材料的選擇。因為在對飛行器的自我檢測技術方面,具有電-力耦合功能的材料的受力狀態與電磁性能存在特定的函數關系,由此系統能通過檢測電磁性能達到檢測受力狀態的效果,這大大方便了對飛行器的健康監測,也有效保證了飛行器的安全。這其中耦合函數的準確性便成為關鍵,電-力耦合的發展能促進這些技術的健全,具有十分積極意義。
2.4.2 溫度與力學耦合
溫度場與力場的耦合主要體現在發動機上,對于發動機內部涵道的設計最優化一直是熱力學著力解決的問題。
目前大部分飛機均采用噴氣式發動機,包括:渦噴發動機、渦扇發動機以及渦槳發動機。上世紀40年代末,渦噴發動機出現,飛機飛行速度第一次能超過音速,帶來了一場飛機發動機的技術革命。由此,包括進氣道以及發動機涵道的設計成為發動機研發的一個關鍵點,早期的渦噴發動機,由于涵道上的設計缺陷,導致燃料燃燒產生熱能轉化為推進力的轉化比很低,同時伴隨著燃燒不充分,因此發動機耗油量很高且推力較小。經過幾十年的發展,目前無論軍用還是民用飛機發動機,大部分均采用渦扇發動機,通過優化得到的涵道形狀最大化了單位燃油所提供的推力。圖3為民用客機發動機涵道。
我國的飛機發動機工業水平距離世界領先水平仍有較大距離,特別是在大涵道比的商用發動機研發上。發展熱力學,對熱-力耦合問題進行更深入的研究,是發展我國飛機發動機事業的奠基石。
2.4.3 流固耦合
流固耦合是飛行器研制最基本的問題之一。幾十年的發展歷程中,基于流固耦合研究的飛機外形設計取得了諸多進展,包括整體機身外形的優化,翼梢小翼的出現等。隨著飛機飛行速度的不斷提高,特別是軍用飛機機動性的要求,出現了許許多多新的流固耦合問題。比如針對飛機在大攻角飛行時(一般出現在軍機上),傳統小攻角氣動表示法、穩定理論等均不再適用。因此,解決大攻角非定常問題,需要從飛行器運動以及流動方程同時出發,建立多自由度分析和數值模擬模型。這是典型的流固耦合問題。
同時,以往舊的流固耦合理論,在先進復合材料大量運用的今天,顯然已經不再使用。對舊有理論進行必要的修正,也將成為流固耦合問題亟需完成的工作。
3 結語
當前,國家大力發展航空航天事業,作為高精尖產業,其所運用的理論與技術絕不能落后。力學作為一門古老而又應用廣泛的學科,其對航空航天事業的發展起著舉足輕重的作用。為符合未來航空航天領域發展,航空航天領域的力學應著力向著程序化、工程化、非均質化、以及多物理場耦合化綜合發展。
參考文獻
[1]杜善義.先進復合材料與航空航天[J].復合材料學報,2007(2):1-11.
篇6
空氣動力學是研究物體同氣體作相對運動情況下的受力特性、氣體流動規律和伴隨發生的物理化學變化,在流體力學基礎上,隨著航空工業和噴氣推進技術的發展而成長起來的一個學科。空氣動力學的發展對于航空航天飛行器的研制有著極為重要的意義,是航空航天最重要的科學技術基礎之一,對國家安全、經濟發展、社會和諧都有著重要和用。在過去一段時間里,由于航空工業的相對成熟,關于航空領的研究更多的集中于如何通過改進制造過程降低成本,而不再將主要力量投入新技術的研究,但隨著國際形勢的日益嚴峻、信息化程度的提高以及航空運輸對安全性經濟性的要求,航空技術研究面臨著更多更新的挑戰,使得全球重新提高了對航空技術研究的關注程度。作為航空航天技術的重要基礎學科之一的空氣動力學,也面臨著全新的機遇和挑戰。
1 空氣動力學研究意義和研究現狀
1.1 空氣動力學研究意義
人們最早對空氣動力學的研究可以追溯到人類對鳥或彈丸在飛行時的受力和力的作用方式的種種猜測,但真正形成獨立學科是在20世紀航空事業的迅速發展之后,是在經典流體力學中發展并形成的新的分支,并且迅速成為發展航空航天各類飛行器的重要基礎科學和關鍵技術,推動整個人類航空航天事業的發展,成為航空航天事業發展的基礎。如今,空氣動力學已經不再僅只是應用于航空航天領域,還被應用于環境保護、公路交通、鐵路交通、冶金、建筑、體育等眾多領域,對整個人類社會的發展與進步都有著極為深遠的影響。
1.2 空氣動力學研究現狀
在20世紀90年代,隨著航空工業的迅速發展,使得航空工業整體技術程度相對于其它行業都成熟許多,基于此種原因,在較長一段時間里學界多認為航空工業已經走向成熟,尤其是空氣動力技術基礎技術方面,因此航空工業的研究將更多的集中于成本費用的降低,而減少了對應用技術的研究重視程度,使得空氣動力學的研究相對緩慢。進入21世紀以后,隨著計算機技術、通信技術、飛機設計技術等的發展,人們重新重視起了空氣力學的研究,使得空氣動力學得到了較好的發展。如以Euler及Navier.Stokes方程為主要數學模型的整機及部件繞流流場和氣動特性計算研究領域,在我國即得到了極大的發展,并被應用于很多重點型號的研制中;再如飛機多外掛氣動干擾特性研究、現代殲擊機大攻角過失速氣動持性研究等,都取得了極大的進展,在計算空氣動力學領域也取得了突出的成績,很多研究成果處于國際先進水平。
2 空氣動力學研究所面臨的挑戰
傳統的認為空氣動力學研究已經足以滿足航空航天需求的認識很明顯是錯誤的,隨著飛機一體化設計技術、微型飛行器、行星探測飛行器的發展,必然向空氣動力學的研究提出新的挑戰。
3 先進飛機器研制需求所帶來的挑戰
隨著航空交通事業的不斷發展,以及出于國家安全等方面的需要,對先進飛行器的研制需求不斷提高。如高機動性作戰飛機、可重復使用高超音速飛行器、大型民航機、大型運輸機、地效飛行器、微型飛行器、智能飛行器、無人偵察機、戰略戰術導彈、應用衛星、概念武器等,都對空氣動力學的研究提出了更多的挑戰性課題,需要空氣動力學從復雜流場預測、噴流干擾、氣動隱身、微流體力學、氣動防熱、高超音速邊界湍流、低雷諾數流動力學、地面效應等多個方面進行更深入的研究,而所有這些研究,都涉及高度非定常、線性,包括復雜的物理化學變化效應的影響,難度極大。
例如,大容量運輸機的研發,首先需要解決大容量運輸機高燃油效率、低噪聲、常規跑道起飛著陸能力的需要。在這里,雖然高燃油效率可以通過混合層流控制技術(HLFC)、發展新型發動機、采用高效的氣動設計方面來進行滿足,但這些技術要應用到大型飛機、高Re數情況卻還存在很多缺陷和不足。再如低噪聲的研究也是大型飛機所必須關注的問題,必須充分將聲學研究向氣動研究結合在一起進行。同時,還必須考慮增升阻力、尾渦效應、發動機噴流和外流干擾效應等。
3.1 自適應流動控制需要所帶來的挑戰
傳統空氣動力學對繞復雜物體的流動,多集采用渦發生器、吸氣、吹氣、肋條等技術進行模擬研究,但這種研究主要集中于流動的被動控制,隨著近年來電子技術、軟感技術、材料技術等的發展,傳統的集中于被動控制的研究存在許多不足,必須對宏觀流動和微觀流動的主運控制進行更深入的研究,這對飛行器的未來發展有著極為重要的意義。只有提高自適應流動控制研究水平,才能提高自適應流動控制技術,為飛機結構設計提供更為全面的飛行控制函數,以有效減輕飛機重量和飛行能力。
篇7
一、中國航空航天產業R&D活動的特征分析
近年來,中國航空航天產業實現了跨越式的發展,產業R&D活動的投入和產出也達到了前所未有的規模。在投入方面,2000年,航空航天產業R&D活動經費內部支出為137 932萬元,20011年已經達到1 435 570萬元,創歷史新高;R&D活動經費內部支出增長率也逐年提升,2001年的增長率為19.78%,之后穩步增長,2010年增長率達到41.14%,2011年達到54.62%。技術改造經費支出達到了373 716萬元,技術引進經費支出達到了21 109萬元。研發人員數量為22634人,比2000年增長了50.7%。在產出方面,2011年中國航空航天產業新產品產值達到,新產品銷售收入4 980 325萬元;專利申請數共計2 114項,有效發明專利授權量達到1 227項,占專利申請總數的58.04%。
二、中國航空航天產業R&D投入與產業發展關系實證分析
(一)變量選取
R&D投入活動包括R&D經費支出和R&D活動人員兩個核心因素。新產品產值通常作為企業R&D投入活動的產出成果。本文選取R&D經費內部支出X1和R&D人員全時當量X2作為自變量,選取新產品產值Y作為因變量,來對中國高技術產業的R&D投入與產出之間的量化關系進行分析。
(二)數據說明及模型的建立
原始數據來自國家統計局編《高技術產業統計年鑒》。對各變量數據進行平減,剔除物價變動等因素的影響。基于剔除物價變動后的數據,通過分析發現,1995—2011年航空航天產業R&D活動人員和經費投入與新產品增加值的變化趨勢大體一致,也即R&D活動人員和經費投入與新產品增加值具有一定的線性相關性。根據柯布—道格拉斯生產函數,即Y = AKαLβ,其中,α,β分別為投入的資本和勞動力對產出的彈性,同時考慮減少異方差性,分別對自變量和因變量取自然對數,本文建立以下模型:LnYt=c+LnX1t+LnX2t +ε,t=1995,···,2011。
(三)實證分析
1.平穩性(ADF)檢驗
變量Log Y和Log X1都是時間序列數據,對其進行平穩性檢驗,最優滯后階數根據AIC準則而確定。根據表1中的結果,變量LnY、LnX1.LnX2的ADF檢驗值均大于1%、5%、10%顯著性水平下的臨界值,則不能拒絕原假設,即LnY、LnX1.LnX1都是非平穩序列。LnY(-2)、LnX1(-2)、LnX2(-2)的ADF檢驗值均小于1%、5%、10%顯著性水平下的臨界值,則LnY(-2)、Ln 1(-2)時間序列不存在單位根,是平穩序列(見下頁表1)。
檢驗結果說明Ln Y、Ln X1.LnX2在1%、5%、10%的顯著性水平下是不平穩的,但其二階差分在在1%、5%、10%的顯著性水平下是平穩的,即Ln Y、Ln X1.LnX2同為二階單整。因此可以進行協整關系檢驗。
2.協整關系檢驗
基于Johansen協整檢驗方法,對變量Ln Y、Ln X1.Ln X2進行協整分析。下頁表2中顯示的是跡統計量的檢驗結果,原假設None下計算的跡統計量的概率P值為0.0668,可以拒絕原假設,認為至少存在一個協整關系;原假設At most 1下計算的跡統計量概率P值為0.6803,不可以拒絕原假設,不認為存在兩個協整關系;原假設At most 2下計算的跡統計量概率P值為0.9634,不可以拒絕原假設,不認為存在兩個以上的協整關系。
根據對數似然值的協整關系,得出協整方程式:LnY=0.4685LnX1+8.52 LnX2。得到LnY、LnX1.LnX2都是正相關的長期均衡關系。即R&D活動經費支出和R&D活動人員全時當量對航空航天產業的發展在長期有正向的作用,且R&D經費支出每增加1%,新產品產值增加0.4685%,R&D活動人員全時當量增加1%,新產品產值增加8.52%。
3.誤差修正模型
基于變量間存在的協整關系,進一步建立將短期變化與長期均衡聯系在一起的矢量誤差修正模型(VECM)。經反復試驗利用AIC和SC統計量以及相應滯后期的系數的顯著性判斷后發現,最佳滯后期為2期。因此,建立誤差修正模型的估計結果如下:
LnY=0.341LnX1+0.085LnX2-0.4739LnY(-1)+ 0.133LnYX2(-1)+0.51LnX1(-1)-0.129ECM(-1)
從估計結果可以看出,誤差修正項的系數為0.129,表示當短期波動偏離長期均衡時,誤差修正項將以0.129的力度作反向調整,將非均衡狀態拉回到均衡狀態。
4.格蘭杰因果關系檢驗
為進一步說明各變量之間是否存在因果關系,對各變量進行因果關系檢驗。表3中的顯著性檢驗結果可以看出,在10%的顯著性水平下,0.091小于0.1,拒絕原假設“Ln X1不是Ln Y的格蘭杰原因”,0.0476小于0.05,拒絕原假設“Ln X2不是Ln Y的格蘭杰原因”。說明R&D經費支出和人員全時當量是新產品產值的格蘭杰原因。
而檢驗結果顯示,在10%的顯著性水平下,0.5857大于0.1,不能拒絕原假設“Ln Y不是Ln X1的格蘭杰原因”,0.6901大于0.1,不能拒絕原假設“Ln Y不是Ln X2的格蘭杰原因”,說明新產品產值不是R&D經費支出和人員全時當量的顯著原因。但由于檢驗結果的滯后期為4,且顯著性水平為10%,說明格蘭杰因果關系并不明顯,也就是說中國航空航天產業R&D投入與產業發展尚未形成良性的互動關系。
三、結論及對策建議
通過協整關系式,得到LnY、LnX1.LnX2都是正相關的長期均衡關系。也就是說R&D活動經費支出和R&D活動人員全時當量對航空航天產業的發展在長期有正向的作用,且R&D經費支出每增加1%,新產品產值增加0.4685%,R&D活動人員全時當量增加1%,新產品產值增加8.52%。格蘭杰因果關系檢驗結果說明Ln X1是Ln Y的格蘭杰原因,Ln X2是Ln Y的格蘭杰原因,也即R&D經費支出和人員全時當量是新產品產值的格蘭杰原因;檢驗結果的滯后期為4,且顯著性水平為10%,說明格蘭杰因果關系并不明顯,也就是說中國航空航天產業R&D投入與產業發展尚未形成良性的互動關系。
為進一步提升中國航空航天產業的競爭力,本文認為應從以下幾方面提升航空航天產業R &D投入的效果:第一,深化產學研合作,引進外部技術或與高校及科研院所合作來獲取創新產品或技術,為航空航天產業科研注入新的活力;第二,加大航空航天產業的R&D投入強度,加強有效管理,提高R&D經費的使用效率;第三,重視引進核心科研人員,注重R&D人力資源的優化配置。提高R&D人員中科學家和高級工程師的比重,優化R&D人員的配置及結構。
參考文獻:
[1] 李邃,江可中,鄭兵云,等.高技本產業研發創新效率與全要素生產率增長[J].科學學與科學技術管理,2010,(11):169-175.
[2] 余泳澤,武鵬.中國高技術產業研發效率空間相關性及其影響因素分析[J].產業經濟評論,2010,(3):71-82.
[3] 王堅強,陽建軍.基于DEA模型的企業投資效率評價[J].科研管理,2010,(4):73-80.
[4] 廖和信.專利就是科技競爭力[M].北京:知識產權出版社,2008.
篇8
目前測度產業生產率的方法主要是總量生產函數、隨機前沿生產函數(Stochastic Frontier Production Function Method,SFA)和數據包絡分析(Data Envelopment Analysis,DEA),適用于不同的條件,其中DEA法要求較高的數據準確性,SFA法考慮了隨機誤差對經濟增長的影響,也允許存在無效率,能較好的模擬經濟狀況。由于航空航天產業在發展中存在隨機擾動和不可觀測因素,采用SFA法應該更為適用。
技術創新要素是產業創新要素的核心,創新組織要素和創新環境要素圍繞著技術創新要素發揮作用。因此,文章采用SFA的方法對我國航空航天產業1995年~2011年的技術效率進行了測度,并分析了時間、地區特征、人力資本素質、研發投入、企業規模及制度等對技術效率的影響,為航空航天產業的發展和技術提升提供借鑒。
二、 模型與數據來源
1. 航空航天產業生產效率基礎模型。文章采用Battese&Coelli(1995)提出的SFA模型 ,假定我國航空航天產業生產函數為CD生產函數,則隨機前沿生產函數模型為:
Yit=A(t)K?琢itL?茁itevit-uit i=1,…,I;t=1,…,17(1)
兩邊取對數,(1)式變為:
lnYit=?子+?仔?子+?琢lnKit+?茁Lit+vit-uit (2)
其中,Yit、Kit、Lit分別是i省t年產業總產出、資本投入和勞動投入,?琢、?茁是資本、勞動的產出彈性;A(t)=e?子+?子?仔為t年各省市前沿技術進步水平,其中e?子是基年即1995年產業初始技術水平,?仔是前沿技術水平進步速度;vit-uit是隨機擾動項:vit是經濟系統自身存在的隨機誤差,服從對稱正態分布,即vit~N(0,?啄2v);uit是技術無效率項,服從單側正態分布,即uit~N+(mit,?啄2u),mit是技術無效函數。
影響uit的因素很多,制度是重要的影響因素,此外還有企業規模、人力資本素質、研發投入、能源消耗狀況、產業生命周期及產業密集度等。限于數據的可得性,將uit設定為人力資本素質、研發投入、企業規模和制度的函數,并考慮時間和地區因素:
mit=?漬+?茲t+?準1Locit+?準2Humit+?準3RDit+?準4Scaleit+?準5Systemit+wit i=1,…,I;t=1,…,17(3)
其中,?漬i(i=1,…,5)是技術無效率函數中第i個因素的截距項;t為時間趨勢,系數?茲為正表明技術效率隨時間的推移遞減,反之亦然;Loc、Hum、RD、Scale和ystem是地區特征、人力資本素質、研發投入、企業規模和制度,系數?準i為正表明第i個因素對技術效率的作用是消極的,反之亦然。各個變量含義見表1。
(4)
式中?酌是指式(2)隨機擾動項占技術無效率項的比重,?酌越趨近于1,前沿生產函數和技術無效函數的設定就越合理,采用隨機前沿模型就更合適。
2. 數據來源與處理。文章主要數據來自《中國高技術產業統計年鑒》,航空航天產業的統計數據最早可至1995年,所以研究期間為1995年~2011年,樣本是去除數據缺失較多的、海南、新疆、寧夏、云南、浙江、內蒙古以外的其他22個省市。此外,價格指數來自各年《中國統計年鑒》。
各指標數據選擇及處理如下:
(1)總產出(Y)選取了能大體反映產業發展的當年價總產值,并采用以1995年為基期的各省市第二產業價格指數進行縮減以消除價格干擾。
(2)勞動(L)選取從業人員平均數,即年初就業人數與年末就業人數的均值。
(3)資本(K)的選取,1995~2005年為年末固定資產額,2006~2011年根據(5)式永續盤存法計算,即在上年折舊后加當年固定資產投資額。航空航天產業是高技術產業,資產提前報廢、更新、淘汰的可能性較大,設備的技術損耗也會導致固定資產價值驟減,在借鑒會計上飛機、電子設備等折舊處理方式將折舊率取值15%。之后,用各省市固定資產投資價格指數將固定資產值統一折算到1995年不變價,其中廣東缺乏的1995~2000年價格指數數據用地理和經濟水平接近的福建替代。
Kit=Kit-1(1-)+Iit(5)
其中,Kit、Kit-1、、Iit分別是i省t年固定資本存量、i省 t-1年固定資本存量、固定資產折舊率和i省t年固定資產投資額。
(4)無效率因素:①地區特征,將22個省市分為東中西3個地區,分別取值1、2、3。②人力資本素質,是科學家和工程師占從業人員的比重。科學家和工程師知識水平高且實踐經驗豐富,是技術創新的主要貢獻者,這一指標能大致反映產業人力資本水平。③研發投入,是R&D經費內部支出占主營業務收入的比重,涵蓋了企業內部開展R&D活動的實際支出,能準確反映產業的R&D水平。其中,總產值以1995年為基期的第二產業價格指數進行了縮減。④企業規模,是產業總產值與企業數量的比值。產業內企業的數量是衡量市場結構和容量的重要指標,也能反映行業進入和退出的難度。⑤制度,用樊綱等(2011)的市場化進程指標來刻畫,他從政府與市場關系、非國有經濟發展、產品市場發育程度、要素市場發育程度、市場中介組織發育與法律制度環境5個方面綜合測度了市場化進程,此外,用趨勢外推法估算缺失的1995年、1996年、2010年及2011年的數據。
三、 實證結果及分析
利用Frontier4.1軟件得出模型的參數估計值和檢驗結果,并得出各省市航空航天產業1995年~2011年的技術效率水平(見表2及表3)。
1. 航空航天產業生產函數分析。據表2的結果,LR統計檢驗值的顯著性水平為1%,表明(1)式中誤差項vit-uit復合結構明顯, SFA法比OLS法更恰當;估計量?酌=0.612統計結果顯著,表明技術無效率中隨機誤差項的影響高達61.2%、統計誤差等不可控因素比例低,模型設定合理可靠,有必要分析技術效率未能充分發揮的原因。截距和時間趨勢項系數為1.662和-0.061,表明1995年產業前沿技術進步水平為5.270(e1.662),之后以年均6.1%的速度下降。這可能的原因是:航空航天產業是國防科技工業中相對封閉、開放度小的行業,盡管十五大以來進行了改革,但科研、生產兩張皮現象依舊存在,科技成果難以實現產業化;國防科技工業改革是漸進式的,這也有可能是改革過程中出現的無序狀況。資本、勞動的彈性系數分別為0.350和0.712,表明勞動貢獻度是資本的2倍。這也說明航空航天產業是知識密集型產業,科技人員在技術設備投入基礎上進行產品的發明、實用新型和外觀設計研發;重大技術R&D中需要大量科技人員長期持續的共同開發,勞動力及高科技人才作為稀缺要素發揮重要作用。此外,資本與勞動彈性系數之和大于1,表明產業具有容易形成規模報酬遞增的特征。
技術無效函數中,時間趨勢項系數值為-0.002,表明產業技術效率年均增加0.2%,但統計結果不顯著。前沿技術下降伴隨技術效率提高的原因可能是:①我國尚未形成自主創新的技術創新體制,還處于依賴國外先進技術的狀態,如我國不具備生產渦輪風扇發動機或先進火控系統的能力;②產業部分是國防科技工業,具有公共產品的特征,會造成技術前沿下降的錯覺。例如某些航空產品或軍用航天器只是國防建設的需要,不參與市場流通,統計數據上無法顯示。地區變量系數值為0.079,統計結果略微顯著,表明東中西部地區產業技術效率呈現遞減狀態。
人力資本素質系數值為-0.010且統計結果較為顯著,表明人力資本能積極提升產業技術效率,提高雇員中科學家和工程師人員的比重可以有效提高勞動生產率。Vandenbussche等(2006)的研究表明教育水平會使勞動力會對技術效率產生不同的影響,文章研究結果與其一致,表明科學家和工程師比重上升1%會提高1%技術效率水平,因為科學家和工程師具有較高的知識水平和豐富的實踐經驗。可見,航空航天產業吸收的勞動力具有較高的素質水平,對產業技術效率的提高做出了一定的貢獻。
研發投入系數值為0.022且統計結果顯著,表明研發投入對產業技術效率具有消極影響。研究期內各省市及全國水平的研發投入總體上漲,但研發績效不高,這與鐘衛等(2011)的研究結果一致,他認為在經濟發展初期加大R&D投入能有效提高技術創新效率,但隨著企業深入發展應重點調整經費投入結構。此外,航空航天產業企業大多由國家或國有控股,近年雖有下降但國有比例仍高達50%。雖然國有企業有規模、政府特許等優勢,但激勵卻不充分。十五大以來中央對國防工業做出的多次部屬是對改革的進一步延伸。
企業規模系數值為-0.134且統計結果顯著,表明企業規模是積極的影響因素。產業具有高投入、高技術和高風險等特點,進入的企業都有一定的規模。研究期內各省市企業規模變化起伏:相對來說,黑龍江、江西、遼寧的企業規模曾較高(≥6億元/企業)但變化急劇;大多數省市都在0~2之間。產業中大型企業比重不到20%,大中型企業比重在50%左右,并未形成良好的企業規模;此外,《2012年財富世界500強》排行榜中有12家航空公司,其中我國雖然有2家但上榜的中國航空工業集團公司在排名、主營業務收入和利潤方面都與排名第一的波音公司差距較大。
制度系數值為-0.148且統計結果顯著,是影響最大的因素。研究期內各省市市場化程度逐年提高,東部優于中部優于西部;位于沿海的廣東、江蘇、福建、上海等省市的市場化程度最高,而西部陜西、甘肅等省市只有發達地區的一半。1964年推行的三線建設將44項中的21項國防工業企業投放在西部,可見產業半數左右企業在西部地區;2001年實施的西部大開發政策一定程度上提高了西部省市的市場化程度,為產業發展提供良好的市場環境。
2. 航空航天產業技術效率分析。根據計算結果(見表3-1及表3-2)對產業技術效率從區域角度進行分析。
(1)航空航天產業技術效率總體分析。依據測算結果(表3),表明研究期內技術效率均值離效率前沿面較遠,僅為0.472,即實際產出水平只占最優隨機產出水平的47.2%(表明既定產出水平下能節約52.8%的投入)。可見,產業未能發掘現有科技資源和技術潛力,資源使用效率、管理水平及產業技術實際利用率低。盡管產業平均技術效率不高,但總體是逐年增長的。
(2)航空航天產業技術效率區域分析。由于地域稟賦、國家政策不同造成我國東中西部經濟發展呈現東強西弱。產業區域技術效率的具體情況(見表4):各個區域技術效率存在顯著差異;東西部增長較快,中部略微增長,所以2000年前原本領先的中部被東部趕超。各省市技術效率排行中,中部的黑龍江和江西排在第一和第三,技術效率值分別為0.85和0.75;大部分東部省市排名都很靠前;西部省市排名全部靠后,甘肅和山西技術效率值最低只有0.23。
航空航天產業區域技術效率差異顯著,最高省市和最低省市相差高達0.62。黑龍江、廣東、江西高效利用了現有技術,效率值都在0.75以上;吉林、甘肅和山西效率最低;9省市技術效率不足0.4。從各省市的變動趨勢來看:高效率省市(≥0.60)除遼寧2003年前增長快速外的變化起伏;陜西、四川、甘肅、貴州、河北等低效率省市(≤0.3)正逐步釋放內部潛力保持低速持續增長。
黑龍江研發投入處于中等且逐年增長、企業規模領先,產出水平很高,因而技術效率最高。黑龍江是工業發展的搖籃,產業全國影響大,其中哈爾濱民航產業發展也很突出。廣東位于沿海地區,能吸引眾多外資和高技術人才,企業規模雖然遞減但處于全國領先,即使研發投入不高但產出規模大。盡管廣東沒有被納入軍事航空制造業布局,但在航空關聯制造業相關領域國內市場占有率名列前茅,并在2010年推行《廣東省航空產業發展規劃(2010~2025年)》促進產業發展。
山西、甘肅位于內陸或經濟不發達地區,產業發展相對較為緩慢,技術效率值偏低。山西技術效率值總體下降;吉林技術效率大致維持在同一水平;甘肅的技術效率逐年緩慢提高;這些變化一部分是由于受當地經濟發展的影響,一部分也與國家政策支持力度和國防科技工業布局有關。
四、 結論和建議
航空航天產業發展過程應重點關注技術效率問題。文章用SFA法實證測度了1995年~2011年航空航天產業的技術效率,并對時間、地區特征、人力資本素質、研發投入、企業規模和制度等技術無效率因素進行了分析,得出如下結果:
1. 我國航空航天產業技術效率水平較低,研究期內均值只有0.472。技術效率各年均值波動增長,雖然從0.374上升到0.539,但仍有46%的上升空間。從無效率因素來看,時間趨勢不是很顯著;人力資本素質、企業規模、制度因素對技術效率具有積極的影響,應適當加大或提高這部分的水平;研發投入作用消極,應對投入結構進行調整。
2. 航空航天產業技術效率存在區域差異,區域效率均值排序為東部>中部>西部,黑龍江、廣東、江西技術效率值排名前三,吉林、甘肅和山西排名最末。值得注意的是,研究期間內西部技術效率持續穩定的增長,中部是早期處于領先的情況下后期被東部趕超。
綜上所述,人力資本素質、企業規模和制度等因素對航空航天產業技術效率具有積極影響,研發投入的作用是消極的。為了加快我國航空航天產業的增長,不僅需要完善教育、培訓和人力資源開發體系,也應當擴大企業規模、使之形成規模效應,并推進市場化改革,保證所需人才、基礎設施和制度支撐條件,此外也應改革國防科研體系,在改革研發投入結構的基礎上提高研發投入,最終促進產業發展。
參考文獻:
1. 丁兆浩.中國地區經濟發展差異性.東方企業文化,2011,(14):82-83.
2. 欒春娟,王賢文,梁永霞.世界航空航天技術領域專利競爭.科技管理研究,2008,(12):429-433.
3. 霞飛.與三線建設.黨史縱覽,2004,(11):10-15.
4. 徐杰,楊建龍.全要素生產率研究方法述評.現代管理科學,2010,(10):3-5.
5. 張政治,謝毅梅,張文強.我國航空航天產業創新能力提升路徑分析.科技管理研究,2011,(5):7-10.
6. 諾思.制度、制度變遷與經濟績效.上海:上海三聯書店,1994:3.
7.鐘衛.中國區域R&D投入績效的統計評價.統計與決策,2011,(7):91-93.
篇9
[文獻標識碼]A
[文章編號]1006-5024(2008)06-0122-04
隨著西部大開發的不斷深入,西部省份如何充分利用本地雄厚的國防科技資源,實現當地經濟的發展與騰飛,是一個亟待解決的問題。西安作為中國航空航天產業的重要基地,在中國乃至全球都擁有特殊的地位和聲譽。2002年麥肯錫的戰略咨詢結果和專家論證表明,航空航天產業是西安市應該發展的支柱產業。也有資料指出,航空產業的投入產出在10年之后就是1:80,就業拉動是1:40。一個機型將有500多個企業單位與之配套,二級配套的廠商更達到3000-5000家,形成一條金字塔式的產業鏈。西安發展航空航天高技術產業在全國具有獨一無二的比較優勢。
一、高技術產業園區的闡述
高技術產業區域(Hi-Tech Jndustry District)主要是指高技術產業開發區,以及連綿形成的高技術產業開發帶(以下簡稱為高技術區域),是高技術企業生存和發展的載體,是一種新型的科學與工業相結合的社會組織形式,包括高技術中心(Technopole)、科技工業園(Hi-Tech Industry Park)和科學城(Seience City)。
產業聚集是高技術區域的成功特征。理論研究與發展的實踐表明,一個國家或地區競爭優勢的獲得來源于產業在其內部聚集過程中的優勢獲得。波特(Potter,1998)以為,在經濟全球化進程中,產業聚集可以從三方面影響企業和區域的競爭:一是提高企業的生產率;二是指明創新方向和提高創新速度;三是促進新企業的建立,從而擴大和加強聚集本身。
實際上,新時期的產業聚集更強調在柔性聚集過程中知識、技術等要素的重新組合與創新,強調本地工程師、技術工人等要素的集中以及本地熟練勞動力市場的形成。各種知識型的資源優勢越來越成為各國區域發展的主要動力。在高技術區域發展中,產業聚集更多的是依重于創新,聚集的方向是選擇具有大量高技術人才和良好創新環境的區域。因此,可以說高技術產業的聚集是以高級知識、技術要素為主形成的,目的是為了獲取具有持續競爭力的動態競爭優勢。這也是高技術區域發展的重要基礎。
高技術產業區域的聚集功能是指高技術區域憑借其具有的區位優勢,將各種社會資源聚集在一起協同發揮作用的效應。從其內在實現價值看,聚集是高技術區域的重要區位特征,高技術區域的聚集功能是表現在人才、資金要素的資源聚集和創新的聚集,并最終體現在高技術產業經濟效益的聚集;從其外在表現分析,高技術區域的聚集功能會造成對外部和其他區域人才、資金、技術的抽吸效應,從而使其取得聚集經濟效益的快速發展,形成技術、經濟優勢的高勢能區位,反過來又對外部和其他區域產生波及影響和帶動作用。
二、高技術區域產業聚集的創立、成長與發展
產業聚集可以反映出一個高技術區域的競爭優勢和條件,但是它并非一開始就以完整的面貌出現,必然要經歷一個產生和發展的過程。從硅谷的發展可以辨識出,高技術產業聚集可以產生聚集效應,但最初的產生肯定是一些非聚集的因素在起作用。這些因素是一些區域的結構性因素,也是觸發性因素(如斯坦福大學、政府投資含軍事投資、企業衍生等),它們與其他的區位優勢(如自然稟賦等)結合,就會產生指向性區位因素,形成最初的企業進入動力。而這些企業又會吸引其他企業進入,區域的功能性因素起聚集的主要作用,形成動態的聚集因素(如風險投資、企業家精神和協作文化等),促進產業聚集的自我發展。這個演化過程可以從下圖表現出來。
高技術區域也可以看作是為產業聚集創立的一種區位優勢。技術創新理論認為,在近乎完全競爭的市場中存在小企業技術創新的門檻,如果此類門檻過高的話,經濟發展有時會因為小的歷史事件而被鎖定在某低級技術水平上。如果技術的創新和擴散是多數采用者都隨著它“走”而引發的,那么優化選擇的機制和環境就能提供有效的通道。為了幫助高技術小企業克服創新門檻的阻礙,并防止經濟發展水平在某個低水平上鎖定,高技術區域便應運而生,并以提供區位優勢因素來幫助小企業進行技術創新,而不完全是出自自發的。高技術產業群的形成無疑需要企業有較低的進入門檻。創業企業能自由進入聚集產業,其進入會帶來新技術、新思維、新的競爭方式,有利于促進競爭與創新,為產業聚集帶來活力。
高技術產業區域的發展模式對園區發展至關重要。Walt,Whitman.Rostow在《經濟成長的階段》(1960)一書中認為正確規劃某一時期的主導產業、確定其發展模式是制定區域產業政策的核心內容,也是壯大區域經濟實力,提高區域競爭力的迫切需求。林金忠(2001)認為,聚集經濟本質上是空間意義上的外部規模經濟。他把規模經濟分為兩類:單個企業的內部規模經濟;眾多企業在局部空間上的集中而產生的聚集經濟。他提出了三種聚集經濟的類型:多層次聚集(企業間橫向聯系而形成的聚集):企業縱向關聯而形成的聚集(產業鏈);由于區位優勢而形成的同一產業或不同產業的眾多中小企業的聚集。在科技園區的建設中,涵蓋了三類的聚集活動。三種的聚集活動在園區中處于不同的層次,和園區的發展階段緊密相連,如何協調三者之間的關系,如何促成不同階段的企業的聚集活動,這取決于園區發展模式的選擇。
本研究認為高技術的產業聚集最適合選用的模式為“龍頭+網絡”的形式。“龍頭+網絡”形式也被稱為混合式聚集,是由多核式與網狀式混合而成的產業聚集。聚集內部既存在幾個核心企業及相關的小企業,又存在著大量沒有合作關系的中小企業,例如美國的硅谷和印度的班加羅爾軟件工業園。
高科技產業聚集以高科技龍頭企業為核心,以大量的中小民營科技企業為配套,以科研院所為支撐,實行政府退出,行業協會運作的機制。高科技產業聚集生產高科技產品,經營風險大,產品的技術層次高,附加值往往也很大,要求企業擁有核心技術和自主知識產權,具有很強的技術創新能力。這類產業聚集在科技資源高度密集,傳統工業基礎雄厚,民營經濟發達的地區容易形成規模,如東莞的計算機硬件產業聚集,西安的航空航天產業聚集,長江三角洲的先進制造業聚集和北京的信息產業聚集等。
三、龍頭企業帶動模式
(一)龍頭企業帶動模式的基本內涵
通過龍頭企業的發展,帶動一大批配套、協作企業,圍繞龍頭企業形成產業聚集。其主要特點包括:(1)多核式與網狀式聚集并存;(2)核心企業不僅帶動了配套企業的發展,也為散存的中小企業提供了機會;(3)核心企業與配套企業依靠品牌為核心競爭力,散存的中小企業主要以低成本為競爭優勢;(4)技術創新是聚集中小企業生存和發展的關鍵。
(二)行業內龍頭企業帶動因素
1.龍頭企業與產業聚集的關系。在任何一個產業聚集中,小企業都占多數。從產業聚集內部各類企業的數量來看,有完全以眾多小企業組成的“原子式”產業聚集和以少數大企業為中心(龍頭企業)、眾多小企業為而形成的“輪軸式”或“中衛式”產業聚集。在兩類產業聚集中,尤以中衛式產業聚集最為普遍。在該類聚集中,大企業處于整個企業聚集的支配地位,小企業聚集處于或下層,主要為“核心企業”進行特定的專業化加工。并且核心企業主要負責產品的最終組裝與生產技術難度高、附加值大、對規模效益反應敏感的配套產品,小企業多是分工生產技術要求低、批量小、專業性分工度高的各種零輔件與半成品等,參與聚集的小企業往往又有一次承包、二次承包甚至更多次承包之分,即把核心企業委托的生產業務根據專業分工要求分包給其他小企業,從而會形成多層次的分工協作體系。中衛式產業聚集的形成往往是少數大企業首先產生,然后眾多小企業逐漸聚集在其周圍。因而相對于眾多小企業而言,政府首先吸引大企業聚集更有目標性,也更容易成功。吳旺延(2[)04)認為,處理好大企業集團與中小企業的關系是西部地區發展中小企業聚集的基礎。龍頭企業是產業聚集得以發展壯大的關鍵,當地政府應當為龍頭企業保駕護航,要注意發現和培植聚集龍頭企業,注重龍頭企業和品牌建設。在計劃體制下,西部地區建立了一批軍工企業和重工業企業。這些企業是按照全能型模式創建的,集企業管理功能和社會管理功能為一體,是基建、供應、生產、銷售、生活服務自成體系的,大而全的企業組織結構。由于體制的原因,這些大企業迫切需要“瘦身”并和其他企業“牽手”,才能恢復活力。
2.龍頭企業對產業聚集發展的帶動作用。“火車跑得快,全靠車頭帶”,產業聚集龍頭骨干企業在加快產業聚集,推動產業聚集發展中起著非常重要的作用。
首先,龍頭企業促進產業聚集。一是龍頭企業都具有較大的規模和實力,在市場經濟條件下,資本、技術、人才等資源總是首先流向那些擁有較大規模和較強實力的大企業。這也就是說,大企業擁有更強的吸引力和凝聚力,能更好地發揮產業聚集主角的功能。二是龍頭企業都具有自主知識產權的知名品牌。品牌是市場經濟的通行證,是市場競爭力和影響力的集中體現。擁有知名品牌的龍頭企業對上下游產業鏈條具有強大的引領和整合能力。三是龍頭企業具有自己核心優勢。對于參與產業聚集的企業主體來說,核心優勢包括核心技術、專利產品、管理技能、市場網絡等諸多方面。一個企業只要在上述一個或多個方面具有獨特優勢,就會對上下游產業產生強大的拉動和聚集作用,從而與其他相關企業形成產業聚集。龍頭企業作為區域內領頭羊,一般都具有自己獨特的競爭優勢。
其次,龍頭企業促進產業鏈延伸。龍頭企業能適應國際分工和專業化生產的新形勢,不斷將一些配套件及特定的生產工藝分離出來,形成一批專業化配套企業,并積極支持中小企業進人自己的供應網絡,而專業配套企業的大量進入,又會帶領上游原材料供應和加工企業,下游銷售企業的不斷涌現,從而促進產業聚集內產業鏈的延伸。
再次,龍頭企業加速科技創新、帶動產業升級。為了保持行業內的領先地位,龍頭企業會更加注重技術的創新和引進。通過與高等院校、科研院所的合作開發新技術、新工藝,與國際大企業合作,引進國外成熟的先進科技,在新產品開發方面不遺余力。研究表明,擁有龍頭企業或知名品牌的產業聚集,科技經費投入規模較大,龍頭企業科技投入也較大。
最后,龍頭企業提高產業聚集內的組織化程度。龍頭企業按市場導向,進入某一產品或產業領域,組織專業生產,為了自身產品的保證和競爭力的培養,龍頭企業雖然會發展很多的配套企業,將一些生產環節分離出去,但還是會通過協作,把產前、產中、產后作為一個體系來運作,激活各環節的生產要素,產生“一石激起千層浪”的連鎖效應。
龍頭企業具有開拓市場、引導生產、深化加工、搞好配套服務的綜合功能。只要充分發揮龍頭企業的帶動作用,通過龍頭企業的品牌優勢、技術優勢和市場優勢,把分散的、小規模的生產經營組織起來,形成有競爭力的產業聚集,改進工藝、提高技術,帶動整個產業水平提高,就會最終形成在全國甚至全世界有影響的產業品牌。
(三)模式中龍頭企業所需條件
1、龍頭企業有足夠大的規模。龍頭企業生產經營的規模較大,經營效益較好,有能力帶動一批配套企業,并能持續為配套企業的生存發展提供市場空間。
2.龍頭企業的產業鏈可拆分。龍頭企業的產品產業鏈較長,并且每個生產環節可以拆分,使配套企業的獨立存在成為可能。
3.龍頭企業產品的外協性。龍頭企業所需的原材料、半成品或零部件可以由配套企業生產或加工,不涉及龍頭企業的核心技術。
4.龍頭企業和配套企業要形成合理的分工協作關系。龍頭企業與配套企業在產品研發、市場開拓、產品生產方面要有合理分工,建立良好的協作關系,不能成為競爭對手。
5.原料取得的便利性。為龍頭企業配套的企業所需的初級原料要很方便取得,能夠承受運輸費用。
(四)應注意的問題
1.龍頭企業要持續穩定發展。龍頭企業的發展是整個產業聚集存在的基礎,只有龍頭企業的持續穩定發展才能為整個產業聚集提供發展的條件和機遇。
2.龍頭企業的技術支持。龍頭企業應為配套企業提供相應的技術扶持,使配套企業能夠跟上龍頭企業技術創新和發展的步伐,保證配套企業的健康發展。
只要培育好龍頭企業,引導好配套企業,協調好龍頭企業與配套企業的分工協作關系,就一定能促進龍頭企業作為帶動型產業聚集的形成和發展。
四、西安航空航天產業園區模式
(一)西安航空航天產業園區可行性分析。地區間的產業競爭集中體現在產業聚集的競爭,要提升產業競爭力,就要增強產業聚集的競爭力,進而要求搞好產業聚集的空間載體即產業園區的建設。產業園區通過培育主導產業和建立相關支持產業配套,聚集和整合大量的資金、人才、信息等資源,組建信息交流和知識擴散的網絡,發揮其外部經濟效應,形成了創新的系統環境,使各個主體能實現有效的分工與合作,同時產業園區通過建立使地方政府、企業、服務機構之間實現互動合作的對話機制,協調聚集之間的地域、產業分工和合作,從而促進聚集的不斷成長并提升產業組織的競爭力。產業園區和產業聚集相互促進、相互制約,產業園區是形成、承載和促進產業聚集發展的空間載體,產業聚集是提升
產業園區和地區產業競爭力的核心內容。
產業價值鏈理論來源于哈佛大學商學院教授邁克爾?波特在其1985年出版的《競爭優勢》一書中提出的“價值鏈(Value Chain)”理論。在生產者驅動的價值鏈中,價值鏈中的關鍵制造者一般控制關鍵技術,扮演協調各個環節的角色。在這里,生產商負責協助它們的供應商和顧客的效率。生產者驅動的價值鏈是那些大型的、通常由跨國制造商發揮中心作用來協調的生產網絡(包括它們的前向和后向聯系),這以資本和技術密集型產業――例如汽車、飛機、計算機、半導體和重型機械產業為典型。
所以,以核心企業為龍頭,形成產業鏈,進而形成網絡化集群是可行的。而且通過發展和完善產業園區建設,充分發揮產業聚集的空間聚集和產業鏈交織優勢,更是增強地區產業競爭力和經濟實力的有效途徑。西安航空航天產業發展模式是圍繞航天、航空等高新技術產業,形成產業鏈、產學研相結合的航空航天產業園區。其中,西安閆良航空產業園結合優勢產業培育龍頭核心企業、拉長軍民兩用科技園區的產業鏈條。即以西安飛機工業集團公司為中心,在支持龍頭核心企業的科研活動及其成果的產業化,注重培育相關配套的企業,拉成產業鏈。西安韋曲航天科技產業科技園區是以龍頭軍工企業為核心形成的園區,即圍繞大型軍工企業形成軍地兩用型產業園區,以航天科技產業為主導,其產業定位是以發展航天科技產業聚集及民為支柱產業,發揮航天高科技的優勢,促進航天科技企業的民用產業發展。
(二)西安航空航天產業園區現狀。西安的閻良、韋曲作為中國航空航天產業的重要基地,具備了發展高技術航空航天科技產業的基本條件。其中閻良擁有一批在全國有一定影響的大型企業集團,如西安飛機工業集團公司、西安飛機設計研究所、飛行試驗研究院,以及毗鄰的西安航空發動機公司,是全國唯一的集飛機設計、生產制造、試飛鑒定、教學培訓為一體、產業體系最完整的航空產業基地;韋曲以研發和制造液體火箭發動機的中國航天集團公司第六研究院基地為依托,兼具西安電子工程研究所等32家航天和高科技產業,充分發揮業已形成的航天科技資源對科技的帶動作用,促進區域經濟的快速發展。
篇10
當我們仰望天空的時候,總會發現時不時有飛機掠過。或許不少人會問,這樣一個龐然大物,其質量少則數百千克,多則幾十噸、上百噸,怎么能夠如此自如地在藍天上飛翔呢?飛行究竟需要具備哪些條件呢?
其實,關于怎樣才能像鳥兒一樣在藍天上翱翔,我們的先輩們探索了數千年,設想和嘗試了許多種飛天方式,但基本都以失敗告終。直到1903年12月17日,美國的萊特兄弟駕駛著他們設計和制造的“飛行者”1號(圖1),進行了時間不到1分鐘、距離只有260m的人類歷史上第一次持續而有控制的動力飛行之后,人類才真正從根本上解決了飛上藍天的關鍵問題。此后,飛機越造越大、越飛越高、越飛越快、越飛越遠,各方面的性能都有了翻天覆地的提高(圖2~圖5)。
實際上,無論是萊特兄弟設計的“飛行者”1號,還是現代的先進客機、戰斗機、運輸機……之所以能飛上藍天,歸納起來是因為它們具備了飛行的3個最基本的要素:
(1)具有能產生升力的機翼,平衡飛機的重力(圖6);
(2)具有能提供拉力或推力的動力系統,平衡飛機的阻力(圖6);
(3)具有能控制飛機姿態的操縱系統,實現飛機按照預定的軌跡飛行。
萊特兄弟的第一次飛行,雖然飛行時間只有幾十秒,飛行距離只有幾百米,離地高度也只有幾米,但他們的探索精神卻永遠值得我們學習,其成功一直激勵著后人對航空航天的持續探索。
萊特兄弟的壯舉,讓人類開始漫步于天空,繼而遨游于天宇。人們把這些能夠在天空和宇宙中飛行的機器統稱為飛行器。飛行器主要分為航空飛行器(簡稱航空器)和航天飛行器(簡稱航天器)。前者是指在空氣中飛行的飛行器,后者是指主要在大氣層外飛行的飛行器。而航模作為一種與航空器和航天器密切相關的模型,則既包括航空模型,又包括航天模型。在飛行器的發展過程中,航模發揮了重要的作用,無論是利用航模進行原理驗證,還是利用航模完成載人飛機難以完成的飛行科目。現代無人機則與航模更是有密切的關系,不少無人機就是從航模發展而來的。
航空和航天技術都是高度綜合的現代科學技術。力學、熱力學、材料學是航空航天的科學基礎;電子技術、自動控制技術、計算機技術、噴氣推進技術和制造工藝技術對航空航天的進步起到了重要作用;醫學、真空技術和低溫技術則促進了航天的發展。上述科學技術在航空和航天的應用中相互交叉和滲透,產生了一些新的學科,使航空和航天科學技術形成了完整的體系。
航空航天的發展都與其軍事應用密切相關,但人類在該領域取得的巨大進展對國民經濟和社會生活也產生了重大影響,甚至改變了世界的面貌。如我們乘坐飛機旅行,使用GPS進行導航,收看海外電視直播,進行天氣預報,這些都離不開航空航天的發展。航空航天科學技術是牽動其他高新技術發展的動力之一,航空航天工業是國民經濟建設中的陽光產業,而航空航天產品則是附加值很高的高新技術產品。
二、翱翔天空的航空器
任何航空器要升到空中,都必須產生一個能克服自身重力的向上的力,這個力叫作升力。另外,航空器在空中的飛行還必須具備動力裝置產生推力或拉力來克服前進的阻力。根據產生升力的基本原理不同,航空器分為輕于(或等于)同體積空氣的航空器和重于同體積空氣的航空器兩大類。前者靠空氣的靜浮力升空,又稱浮空器;后者靠與空氣相對運動產生升力升空。按照不同的構造特點,航空器還可進一步細分,如圖8所示。
1.輕于空氣的航空器
輕于(或等于)空氣的航空器包括氣球和飛艇,它們先機出現。
(1)氣球(圖9)
氣球一般無推進裝置,主體為氣囊,下面通常有吊藍或吊艙。按照氣囊內所充氣體的種類,可分為熱氣球、氫氣球和氦氣球三種。
(2)飛艇(圖10)
飛艇安裝有推進裝置,并可控制飛行。根據結構形式,可分為軟式、硬式和半硬式三種。飛艇與氣球的最本質區別就是它帶有動力和操縱舵面,可按照預定的飛行方向飛行;而氣球由于沒有動力裝置和操縱舵面,在水平方向只能隨風飄移,但在垂直方向可以通過調節浮力的大小或改變質量的大小進行升降。
2.重于空氣的航空器
重于空氣的航空器靠自身與空氣的相對運動產生空氣動力升空飛行。常見的這類航空器主要有固定翼和旋轉翼兩類,另外還有像鳥一樣飛行的撲翼航空器和新近出現的傾轉旋翼航空器。
(1)固定翼航空器
固定翼航空器包括飛機(圖11)和滑翔機(圖12)。
飛機是指由動力裝置產生前進推力或拉力,由固定機翼產生升力,在大氣層內飛行的重于空氣的航空器。滑翔機是指沒有動力裝置的重于空氣的固定翼航空器。
滑翔機可由飛機拖曳起飛,也可用汽車等其它裝置牽引起飛。部分動力滑翔機裝有小型輔助發動機,無需外力牽引就可自行起飛,但滑翔時必須關閉動力裝置。飛機和滑翔機最本質的差別在于大部分飛行時間內是否依靠動力裝置。實際上,在萊特兄弟發明飛機之前,人類就已經發明了滑翔機,并為飛機的發明奠定了空氣動力學和飛行操縱等方面的基礎。
(2)旋翼航空器
旋翼航空器包括直升機(圖13)和旋翼機(圖14)。
直升機是指以航空發動機驅動旋翼旋轉作為升力和推進力來源,能在大氣中垂直起降及懸停并能進行前飛、后飛、側飛、定點回旋等可控飛行的重于空氣的航空器。直升機和固定翼飛機的最本質區別在于,直升機能夠依靠旋翼垂直起降,對起降場地的依賴性很小;而通常意義上的固定翼飛機則只能水平起降,對起降場地的依賴性很大。相對于固定翼飛機,直升機飛行速度慢、震動大。
旋翼機是一種利用前飛時的相對氣流吹動旋翼自轉以產生升力的旋翼航空器,全稱自轉旋翼機。
(3)撲翼機
撲翼機是指能像鳥和昆蟲翅膀那樣上下撲動的重于空氣的航空器(圖15),又稱振翼機。撲動的機翼不僅產生升力,而且產生向前的推進力。
(4)傾轉旋翼機
傾轉旋翼機是一種同時具有旋翼和固定翼,并在機翼兩側翼梢處各裝有一套可在水平與垂直位置之間轉換的旋翼傾轉系統組件的飛機。旋翼傾轉系統處于垂直位置時,傾轉旋翼機相當于橫列式直升機,可垂直起降,并能完成直升機的其它飛行動作;旋翼傾轉系統處于水平位置時,旋翼傾轉機則相當于固定翼飛機。現在世界上唯一有實用價值的傾轉旋翼機為美國貝爾公司研制V-22(圖16)。
三、遨游天宇的航天器
航天器是指主要在地球大氣層以外的宇宙空間,基本上按照天體力學規律運動的各類飛行器,又稱空間飛行器。與自然天體不同的是,航天器可以在人的控制下改變其運行軌道或回收。航天器為了完成航天任務,必須具備發射場、運載器、航天測控和數據采集系統、用戶臺站以及回收設施的配合。
航天器分為無人航天器和載人航天器。根據是否環繞地球運行,無人航天器分為人造地球衛星和空間探測器。按照各自的用途和結構形式,航天器還可進一步細分(圖17)。
1.無人航天器
無人航天器包括人造地球衛星和空間探測器。
(1)人造地球衛星
人造地球衛星是數量最多的航天器(圖18,圖19)。人造地球衛星一般由有效載荷和平臺組成。有效載荷是指衛星上用于直接實現應用目的或科研任務的儀器設備,平臺則是為保證有效載荷正常工作的所有保障系統。按照衛星的用途,可分為科學衛星、應用衛星和技術試驗衛星。
(2)空間探測器
空間探測器是指對月球和月球以遠的天體和空間進行探測的無人探測器,也稱深空探測器。探測器的基本構造與一般人造地球衛星差不多,不同的是探測器攜帶有用于觀測天體的各種先進觀測儀器。
月球是人類進行空間探測的首選目標,世界上多個發達國家向月球發射了探測器(圖20,圖21),并進行了月球實地考察。美國和蘇聯早在20世紀50年代末就開始發射月球探測器,為1969年人類首次載人登月奠定了基礎。
在行星和行星際探測方面,美國、歐盟、蘇聯和日本等國發射了多個探測器,對火星、金星、哈雷彗星、土星、木星、太陽及其星際之間進行了探測。
2.載人航天器
載人航天器是人類在太空進行各種探測、試驗、研究及從事軍事和生產活動所乘坐的航天器。與無人航天器的主要不同是載人航天器具有生命保障系統。目前的載人航天器分載人飛船、空間站和航天飛機三大類。
(1)載人飛船
載人飛船是載乘航天員的航天器,又稱宇宙飛船。按照運行方式的不同,載人飛船分為衛星式載人飛船和登月載人飛船兩類。前者載人繞低地球軌道飛行,后者載運登月航天員。蘇聯、美國成功實現了多次載人飛行,美國還實現了人類登月。美國的阿波羅計劃是人類第一次登上月球的偉大工程(圖22),美國也是目前僅有的進行過登月的國家。我國的載人航天計劃采用飛船形式(圖23)。“神州”號試驗飛船由軌道艙、返回艙和推進艙組成。軌道艙是航天員生活和工作的地方;返回艙是飛船的指揮控制中心,航天員乘坐它上天和返回地面;推進艙為飛船的飛行和返回提供能源和動力。載人飛船的附加用途是為空間站接送航天員或運送貨物。
(2)空間站
空間站是航天員在太空軌道上生活和工作的基地,又稱軌道站或航天站。空間站一般采用模塊化設計,分段送入軌道組裝。空間站發射時不載人,也不載人返回地面,航天員和貨物的運送由飛船或航天飛機完成。空間站的功能可以根據任務要求而變更或擴大,彌補了其它航天器功能單一的不足。蘇聯于1971年發射世界上第一個空間站。我國于2011年發射了第一個空間站――“天宮”1號(圖24)。多個國家的空間站還在太空連接構成了國際空間站。
(3)航天飛機
航天飛機是世界上第一種也是唯一一種可重復使用的航天運載器,也是一種多用途載人航天器。20世紀七八十年代,美國、蘇聯、法國和日本等國曾經開展了航天飛機研制計劃,但只有美國的航天飛機投入使用,并進行了長達30年的運行。美國自1981年成功發射其第一艘航天飛機“哥倫比亞”號(圖25)之后,先后共研制使用了5艘航天飛機,其中“挑戰者”號服役后因為發射失敗而造成爆炸導致7名航天員全部喪生;“哥倫比亞”號服役后因為返回失敗而造成爆炸導致7名航天員全部喪生;其余3艘都在2011年退休。航天飛機由一個軌道器、兩個固體助推器和一個大型外掛貯箱組成,可以把質量達23 000kg的有效載荷送入低地球軌道。航天飛機提供了在空間進行短期科學實驗的手段,有許多國家的航天員參加了航天飛機的飛行。
3.火箭和導彈
火箭與導彈是一類特殊的飛行器,它們均可在大氣層內和大氣層外飛行,但都只能使用一次。我國通常把火箭和導彈劃分為航天器。
(1)火箭
篇11
隨著我國飛機保有量和需求量快速增長,以及為實現從“航空航天大國”向“航空航天強國”發展、提升航空航天工業水平而實施的“大飛機”等項目產業政策的推進,我國對飛行器制造方面的專業人才需求不斷加大。近些年,各類高校依托教學科研優勢,不斷加強或開設了飛行器制造方面的專業,提高了行業參與度。
至今,辦此本科專業的有西北工業大學、北京航空航天大學、南京航空航天大學、哈爾濱工業大學、南昌航空大學等十多所高校。各高校依托自身的優勢,積極開展專業特色化建設,培育自身的專業特長。如西北工業大學偏向于CAD/CAM集成的數字化制造技術、北京航空航天大學突出于板料成型技術專業教學和實驗、中北大學以飛行器特種制造為特色等,形成了面向飛機制造、適應航空航天發展要求的課程培養體系,培養出一批具有飛行器制造工藝技術的航空航天類人才。
從2002年開始,我國高校開始重視本科專業教育教學實習基地的建設,并以此為依托加強學校與企業的交流與合作,如帶領學生深入企業進行現場教學、企業人員為學生講課(講座)、征求企業意見制訂專業培養計劃、訂單培養等。我校飛行器制造工程專業主要面向航天航空飛行器產品制造等相關產業培養鈑金、鉚接、裝配技術類高素質應用型本科人才。由于本專業開辦時間短,目前我校在飛行器制造工程人才培養方面仍處在探索階段。加強實踐教學已成為飛行器制造工程專業人才培養模式的必然選擇,而其中最有效的途徑是校企合作。
2.校企“3+1”合作辦學的優勢
3+1校企合作辦學指前三學年的培養在校內進行,第四學年除部分課程及實驗教學在學校完成之外,其他現場課教學、生產實習、課程設計、畢業設計等環節均在企業內實施,以強化學生工程實踐、動手能力及綜合素質的培養,簡稱“3+1”合作辦學模式。校企合作辦學“3+1”模式,這種合作教育能夠實現工學結合,為學生提供在真實工作環境下學習的機會,是實現應用型工程技術人才培養目標的有效途徑,也是與就業聯系最密切的一種教育模式。
由于有很多限制條件,學校無法投入過多資金購置像企業的一些精密加工設備作為教學儀器設備,所以學生在校內學習期間只能在理論上了解基本成形原理和方法,根本看不到實際的設備及生產工藝過程,也就無法掌握一些知識。而合作教育提供的教學手段和設備資源,彌補了學校的教學條件的不足,解決了教學與生產實際脫節甚至落后于生產現狀的嚴重問題,實現了校企教育資源的優勢互補。
學生在航空航天企業生產實踐過程中會認識到,一個不受社會和企業歡迎的人是無法發揮才干的。到企業后,學生清楚地了解了用人單位人才需求目標,了解了作為飛行器制造專業的工程技術人員必須重點掌握的知識,明確了學習目的和方向,增強了學習主動性。在專業知識對生產過程發生作用的親身體驗中找到了成就感和危機感,提高了學習興趣,明確了專業思想,樹立了學以致用、理論聯系實際的觀念,使就業觀念和定位更符合社會與航空航天企業的需求,且學生就業之后,表現出的工程意識、創新意識和適應工作崗位的能力都明顯增強。
3.飛行器制造工程專業校企“3+1”合作辦學模式探析
我校長期以來,一直與一些航天企業有著較好的合作關系,并與其建立了校外實習基地,如中國航天科工集團柳州長虹機器制造公司、桂林航天電子有限公司等。這些公司每年都會吸收一批本科畢業生,以補充和優化專業技術人員結構。
本科生在外語、計算機及基礎知識等方面表現出了一定的優勢,但普遍存在本科生專業知識與航空航天生產過程的需求脫節比較嚴重、獨立解決現場實際問題的能力非常薄弱,同時表現出對社會及企業的了解甚少,融入工作環境的協作精神比較欠缺等問題。這正是畢業生和企業共同擔心的問題。這些公司在航天專業技術領域與我校飛行器制造工程專業在培養學生過程中需要的全部專業知識具有良好的適應性。可見校企及學生三方都有合作辦學需求的基礎。
3.1合作辦學模式的定位
飛行器制造工程專業人才培養采取校內培養和企業聯合培養的方式,即學生在校期間的學習分為校內學習和企業學習兩部分。學制4年采用“3+1”模式,即3年校內通識類課程、大類學科基礎課程、核類專業基礎和專業課程的理論與實驗教學,著重加強學生基本知識、基本理論和基本技能的學習、鍛煉和培養;累計1年(主要集中在第四年)校外企業核類部分理論課程和實踐教學。
重點是最后一個“1”的環節,具體而言在這一年的校外企業實踐教學環節中實行“部分專業課+課程設計+生產實習+畢業論文(設計)”的集成化教學方式,著重培養學生獲取知識、分析問題和解決問題的能力及創新能力。
3.2“3+1”校企合作辦學的主要特征
3.2.1規范選拔機制,組建一支優秀學生隊伍。第四學年初,學校需要在飛行器制造工程專業組建實驗班進行統一編班授課。學生自愿報名的基礎上,根據學生前三年在校成績及獲獎等綜合素質表現,擇優選拔出一定數量的學生,成立“飛行器制造工程專業‘3+1’校企合作試驗班”。規范的選拔機制應公平公正,公開透明,也是對低年級學生的一種激勵。再則,一支高素質學生隊伍是校企合作有效辦學的重要保障。
3.2.2校企雙方共同制訂和實施培養計劃。試驗班的培養計劃和教學大綱應由我校機械工程學院牽頭,與企業共同協商制訂,將學校教學過程和企業生產過程緊密結合,校企共同完成教學任務,使學生在掌握一定飛行器構造、飛行器制造工藝與工藝裝備的基礎理論和專業知識基礎上,具有鈑金、鉚接和裝配等基本操作技能,能夠從事飛行器產品零件的設計、生產及裝配、工廠生產管理和服務于第一線的工作的能力。實驗班往往會加入部分企業需要的專業課程,學校無法完成的可由在企業中聘請的兼職教師到學校講授。部分實踐教學依據學校實驗設備條件和企業生產進度協調安排。
課程設計、畢業設計選題應盡量來源于企業的生產實際。3.2.3建立校企雙向管理制度。學生實踐活動期間,不僅要保障學生安全和日常教學活動,還不能影響企業正常生產,因此,應嚴格實行校企雙向管理制度。學生的勞動紀律考核應由企業負責,盡量與員工保持同步。校企雙方應各派一名專職輔導員,有利于學生日常行為和具體事務協調與管理。由于航天企業有其特殊性,教學管理程序要適應航天企業產品研制與生產中的相關保密規定。
3.3“3+1”校企合作辦學實施的保障措施
許多學校在開展校企合作辦學的過程中,企業合作積極性不高,教學主體在實施過程中缺乏企業的實際參與和互動等問題。為了實現校企雙贏的合作關系,保障校企關系持久穩定,要在以下兩方面下工夫。
3.3.1尋求學校、學生與企業三方協調。學校有教學任務,學生有就業任務,而企業有其生產任務,校企合作教育應該在學校、學生與企業三者間尋求協調和統一,在學校教學管理部門、二級學院和專業教師的精心組織與周密安排下,加強與企業的溝通和聯系,加強與企業兼職教師之間的合作與協調。校企之間要協同制定相應制度,明確各自在應用型人才培養過程中的職責,成立專門部門,負責協調校企合作各項事宜,真正做到有政策制度的保障。特別要健全學生在企業實踐學習階段的教學質量考核與評價體系,優化企業對試驗班畢業生的擇優錄用機制。
3.3.2培養高質量“雙師型”教師隊伍。近年來,為了加強師資力量,學校引進不少擁有博士學位的畢業生補充到我校飛行器工程專業教師隊伍中,他們雖然有扎實的基礎理論,但工程實踐背景比較薄弱。因此,師資隊伍建設中,除注重學歷、年齡和職稱結構外,還特別強調教師的航空航天企事業單位工作經歷和工程實踐背景。為了加強專業課教師工程實踐能力的培養,學校要鼓勵或創造條件讓來自高校或沒有一線工作經歷的教師到相關企事業單位掛職,增強實踐能力,以促進校企合作教育的開展。
4.結語
篇12
航空航天技術是表征一個國家科學技術先進水平的重要標志,是力學、熱力學、計算機技術、材料學、自動控制理論、電子技術、噴氣推進技術及制造工藝等技術的綜合體現[1],是衡量一個國家國防實力,工業實力和科研實力的重要指標之一。近年來,國家大力發展航空航天事業,為了振興國家,促進我國航空航天事業的快速發展。很多航空航天類的院校比如北京航空航天大學、哈爾濱工業大學等相繼開設了公共選修課《航空航天概論》,受到在校大學生的一致認可,特別是“神舟號”系列載人飛船發射成功以后,航空航天知識受到更多學生的關注[2]。因此,開設公共選修課《航空航天概論》,普及航空航天的基礎知識,日益受到學生們的歡迎。
《航空概論》課程是我校(鄭州航空工業管理學)針對航空特色面向全校開設的公共選修課程。本課程的開設目的有兩方面:一是使學生初步建立航空技術的基本概念和基礎知識。二是拓寬學生的視野,擴大知識面,培養他們學航空、愛航空、投身于航空事業的興趣,使他們初步建立航空工程意識,為今后的工作奠定基礎。
一、本課程的教學現狀
《航空概論》作為一門全校公選課,開設對象以低年級學生為主,選課的學生人數多,學生專業知識背景很復雜,層次參差不齊,而且這門課程涉及的學科也比較多,其中有些理論知識,例如空氣動力學、飛機發動機對很多學生來說比較抽象、難理解,特別是人文社科類的學生,感覺課程內容枯燥、機械呆板,提不起學習的興趣。在教學中,教師講課費勁,學生厭學,難以取得良好的教學效果,這種情況下,迫切需要采取合適的教學方法和手段,優化教學效果。
二、教學內容的優化
《航空概論》是一門關于航空方面知識介紹的基礎課程,基于課程的性質和目的考慮,教學內容應該通俗易懂,不能有太多專業性很強的詞匯,要注意擴寬知識面、保持內容的系統性,反映出科學前沿,同時還需要不斷加強趣味性與知識性,在實際當中要注意教學內容的豐富多彩,比如有鳥類飛行可延伸到現在飛機,有放風箏延伸到飛行原理,進而講解飛機的構造原理,讓學生在感興趣的事例中汲取航空知識。這樣做即可提高學生學習興趣,讓學生積極主動的學習,又可以達到科學普及的目的。
三、教學方法的多樣化
《航空概論》是一門以基礎知識為主的課程,信息量大,且大多數內容以講述為主。為了避免課堂教學枯燥乏味,提高學生的學習興趣,在授課時,應該采用多樣化的教學方法。作為授課教師,通過不斷的探索,總結經驗,請教有經驗的老教師,總結了以下幾種教學方法:
(一)互動、自主式教學方法
“教”與“學”是相輔相成的,缺一不可。若要提高教學效率,就要讓學生充分參與到教學過程中,變被動學習為主動學習。例如為了讓學生更了解世界航空發展歷史,教學中可布置作業,讓學生收集自己感興趣的航空器的各種資料,包括航空器的圖片、型號、性能、發展概況等,然后上臺介紹給大家,通過收集、講解的方式,調動了學生的積極性,增加課堂的趣味性,同時擴大知識面,增長更多課本之外的知識。
(二)啟發、聯想、討論式教學方法
在講述某些章節內容時,要注意啟發學生的想象力,激發學生興趣,強化學生自主學習和知識遷移的能力。例如,在講解伯努利定理時,由于公式內容比較抽象,學生不容易理解和記憶,如果直接向學生灌輸定理的內容和公式,學生的學習效果不是很理想。在這種情況下,可以設定一系列問題。引導學生自己推導出定理的內容。具體授課過程:兩只手各拿一張紙,向紙中間吹氣,讓學生觀察。問題1:發生了什么現象,學生答兩張紙相吸了。問題2:兩張紙為什么會相吸,學生答兩張紙中間的壓強變小了。問題3:壓強代表的是空氣中的那種能量?學生答“勢能”。問題4:當壓強減小時,空氣中哪個參數變大了?學生回答“速度”。問題5:速度代表著空氣的哪種能量?學生回答“動能”。問題6:當速度增加時壓強為什么會減小?引導學生主動思考、相互討論,再進一步引導,勢能和動能的關系,以及能量守恒定律,最后總結出伯努利定律的相關知識。通過這種問答式的教學模式,讓學生自主參加到課堂中,主動思考,積極討論,提高了學習興趣。增強教學效果,對所學的知識記憶更加牢固。
四、教學手段的多樣性
教學手段的多樣性對提高課程的教學效果和質量具有十分顯著的作用。對于綜合性強、信息量大的航空概論,采用多種教學手段,在有限的學時內,讓學生盡可能多的去了解航空知識,顯得尤為重要[4]。因此要不斷的改進教學手段,充分利用多媒體技術、網絡課程、慕課、課外實踐等方式,為學生創造一個快捷、高效的學習環境,提高教學質量。
(一)多媒體教學
多媒體技術集聲音、圖片、視頻、動畫、文字于一體,有著文字信息無法比擬的優勢。很多的知識比如講解燃氣渦輪發動機的工作過程,如果僅僅依靠課本上的文字和教師的口述,學生很難形成直觀的印象,甚至費勁口舌,也無法讓學生真正的理解。而采用多媒體的形式,通過視頻和動畫把氣流在發動機各部件的工作過程進行完整的演示,可以非常直觀和形象的把信息表達出來[4],便于學生理解、加深印象,獲得良好的教學效果。
(二)網絡課程開設
我校結合自己的教學實際,開通了網絡教學平臺,并為每個教師和學生設置了一個網絡賬號,教師可以通過自己的平臺,上傳一些與課程相關的資料。可以在網絡平臺建立:(1)飛機圖片庫。將國內外典型的軍用、民用飛機的形狀,特征、尺寸和功能建立檔案,通過對比學習,學生可以了解更多飛機知識。鍛煉了學生的觀察能力,加深理解所學知識,開闊眼界,拓寬思路。(2)飛機影片庫。把一些戰爭場面中飛機的飛行狀況和性能通過影片展現出來,使學生身臨其境,在感受戰爭的殘酷性的同時更加意識到飛機在現代戰爭中的重要作用,增強學生航空報國、為國爭光的主人翁意識和責任感[5]。(3)老師可以將課程的重點難點上傳至網絡平臺,與學生通過網絡進行答疑解惑。學生隨時隨地可以在線學習,方便快捷,提高學習效率。
(三)慕課
慕課,英文名MOCC(Massive Open Online Course),意思為“大規模、開放性的在線課程”,由教師負責、很多學生參與,集講課視頻、作業、互動、測試相交織的網絡教學模式。將慕課翻轉課程的教學理念和教學模式應用到《航空概論》的教學實踐中,課前學生學習在線課程,積累知識,為上課做準備。課中學生充分參與到課堂中,進行師生之間、學生與學生之間的討論、交流(包括成果展示)、評價(包括學生互評)等學習活動。一方面提高了學生自主學習、合作學習的能力,另一方面培養了學生創新能力和解決問題的能力。
(四)課外實踐活動
為了進一步提高學生的學習興趣,可以把動手能力強、學有余力的學生組織起來,成立航模隊,進行飛機模型的設計與制作。把課堂上學習的理論知識如空氣動力學、飛行原理與實踐動手相結合。現在,航模隊的學生不僅可以做出紙質、木質的飛機模型,還能做出可以遙控指揮的飛機模型。并且,通過自學學習遙控飛行器的技術,已經具備航模飛行表演的能力,個別學生還參加2016年央視春節聯歡晚會廣州分會場上的飛行表演。通過課外實踐,逐步培養學生創新、思考、維修飛機航模的基本能力,增強學生的團隊協作、集體榮譽感的觀念。同時可以帶動更多同學參與到航空航天科普創新活動中,充分利用課余時間,發展學生的個人興趣,提高學生的創新思維和實踐動手能力,增強了我校學生的綜合素質。
五、結論
《航空概論》是一門涉及多學科多領域的綜合性課程,且選課學生的背景專業存在很大差異,如果采用單一的教學方法和教學手段難以滿足課程教學的需要,因此進行教學改進是現實教學發展的需要。通過一系列的措施和教學改進,提高了學生對本課程的學習熱情,增強了學生的自主學習和解決問題的能力,得到了良好的教學效果。
參考文獻:
[1]謝礎,賈玉紅.航空骯天技術概論[M].北京:北京航空骯天大學出版社,2005:9-1.
[2]王文虎,“航空航天技術概論”教學改革與實踐研究[J].科技咨詢,2007,(7):100.
篇13
1967年,我國在航空航天和導彈研發領域都取得了重要進展,包括“和平二號”固體燃料氣象火箭試驗成功、我國第一代自行研制的岸艦導彈成功發射。而這一年,王同慶也從中國科學技術大學近代力學系航空發動機熱物理專業畢業了,作為當時航空航天領域寶貴的人才資源,他畢業后被分配到了沈陽航空航天部新陽機械廠,在那里一干就是十年。十年,會改變很多東西,對于很多人來說,畢業后十年的狀態,一般都是成家立業、結婚生子,生活進入比較穩定的軌道,安穩過日子。
就在一般人都按照已成型的生活軌道平靜地生活的時候,王同慶卻做出了一個決定:考研究生。那是1977年,他的孩子剛出生,如果他去讀研究生的話,家庭生活的重擔就會全部落在太太一個人的身上。但是善良堅強的太太全力支持丈夫的選擇,“我太太當時說,你考上考不上都沒有關系,我都會支持你。她非常支持我,不然的話,我很可能就不會去考了。”太太的深明大義,使他至今回憶起來,言語中還是流露出深深的感激和慶幸。而這個畢業十年后再考研究生的決定,改變了他一生的軌跡。
經過精心的準備,加之太太的支持為他解除了后顧之憂,1978年,王同慶順利考入了中國艦船研究院中國船舶科學研究中心,從事出入水彈道流體力學方面的研究,1982年獲得碩士學位。畢業之后,他就在中國船舶科學研究中心第六研究室任工程師、07試驗室副主任、研究室負責人,這一時期他負責并完成了艦船研究院某型魚雷試驗研究課題。1987年,他進入沈陽航空工業學院航空系振動噪聲研究室及沈航—B&K技術交流中心任研究及應用工程師;直到1995年,被調入北京航空航天大學,從事聲學和氣動測量的教學和科研工作。在不停的追尋中,他的聲學研究事業漸入佳境。
氣動聲學是王同慶的重點研究方向。由機在飛行中會產生較嚴重的噪音污染,國際民航出臺了越來越嚴格的噪聲標準限制飛機的噪聲。而減弱飛機噪聲對于我們國家來講,還是一個比較棘手的技術壁壘。王同慶花費了很多時間和精力在這個研究方面,“我想的是怎樣為我們國家(飛機制造事業)做點事,因為我們每次去國外參加航空聲學大會,參加的外國人非常多,而中國人卻特別少。所以不論是飛機發動機研究也好,噪聲研究也好,我真的就只是想為國家做點什么。”當提到目前我國的航空產品在國際上競爭力較弱的現狀,老先生流露出小孩子般爭強好勝的焦急和不甘心。他也確實為此付出了大量的時間和精力,在民機氣動聲學方面完成了一系列研究,大大推動了我國民機事業的發展。
他先后參加了航空部“民機噪聲控制和聲疲勞研究”系統工程中“螺槳飛機噪聲預測軟件研制”以及“聲強測量標準研究”、Y12飛機艙內降噪攻關任務中“Y12飛機艙內聲強測量”、“螺槳聲場與機身耦合及向艙內傳播模型的研究”、“螺槳飛機艙內噪聲預測”、“用PIV技術測量壓氣機內流激波結構的試驗研究”等重點課題和項目的研究。其中,“螺槳飛機噪聲預測軟件研制”項目獲得航空工業總公司科技進步二等獎,“螺槳聲場與機身耦合及向艙內傳播模型的研究”項目獲得1995年航空基金優秀成果一等獎。這些研究項目和研究成果在民機制造和噪聲控制方面發揮了非常重要的作用。
但是對于這些過往的成績,王同慶并不在意,也沒有過多的談起。他提到更多的,是一種熱切的期望,那就是他希望我們國家的人才可以團結起來各盡其能為國家的發展多做一些事,“(要做好一件事),我覺得就是要靠大家、靠集體、靠團隊,讓我們國家振興和發展,這也是我們共同的心愿。”他說。畢業后默默工作了十年之后再考研,從中國船舶科學研究中心轉到沈陽航空工業學院,再到獲得北京航空航天大學博士學位后進入北航任教,所有的奔波和輾轉其實都是為了他“為國家做點事”的追求在服務。他說“無論做什么,不管在哪兒,只要對國家有用就好。”,這其實就是寶貴的“螺絲釘精神”,他一生的經歷也確實在實踐著這種精神。
于是,這也就讓他對自己的學生有了“不要比工資,不要比待遇,要將工作當成事業來做,而不是當成職業來做”的期望和要求。他認為,只有把自己的工作當成事業來做,才會真正熱愛它,踏踏實實地做事,并愿意為之付出所有。他一直在實踐,并且希望他的學生同樣能夠熱愛自己的工作。他最欣賞的人是袁隆平,原因是袁隆平不事張揚、默默工作,創造出了那么多財富,解決了無數人的吃飯問題,但是自己卻計較和索取的非常少。他說他喜歡這種“不跟誰斤斤計較,不跟國家斤斤計較”的做法。