日本免费精品视频,男人的天堂在线免费视频,成人久久久精品乱码一区二区三区,高清成人爽a毛片免费网站

在線客服

建筑結構抗震論文實用13篇

引論:我們為您整理了13篇建筑結構抗震論文范文,供您借鑒以豐富您的創作。它們是您寫作時的寶貴資源,期望它們能夠激發您的創作靈感,讓您的文章更具深度。

建筑結構抗震論文

篇1

由于我國的科技水平不高,不能準確的判斷地震的成因,并且對其預測,造成居民的很大損失,還有在地質地震等方面的研究不夠,特別是建筑物的抗震能力方面。這就導致我國建筑設計中抗震設計的發展滯后,而且也沒有統一規范的設計理念,因而很難實現建筑設計的抗震目標。

1.2工程師對實際情況的考量不足

目前,很多建筑工程師只是根據數據和固有的一些參數進行施工,缺少對地區的實際情況進行考量。因為不同地區地質的構造截面的實際承載能力不同,所以要結合實際情況進行檢測計算。不能根據固定地震降級系數來進行施工,例如,我國建筑抗震設計中的把地震降級系數固定為2.81,容易導致工程師把小級別的抗震應用到建筑抗震設計中,當遭到大級別的地震時,建筑物不具備抗震能力,會造成很大的損失。

2.建筑抗震設計的注意要點

2.1堅持建筑結構設計的對稱原則

目前,根據相關的建筑抗震設計規定,建筑工程師要堅持建筑結構的規則,同時要求結構設計師做大簡單、規則的設計,從而做到建筑物遇到小級地震不壞、中級地震可以修補、高級地震不會倒的目標。并且要求工程結構設計師遵循豎向形態的建筑規則,通常選擇方形和圓形的形狀,因為矩形和梯形的形狀規則比較均勻。按照此類形狀設計的建筑物,在遇到地震時內部構件承受力比較均衡,通常只會出現平移震動,而一些非對稱結構的建筑在地面平移時,會出現扭轉震動,主要是因為建筑物的質心和剛心不能重合,當發生地震時,建筑物的內部構件會遭到嚴重的破壞,發生變形。

2.2注重建筑構件與連接點處質量

在建筑工程設計和施工過程中建筑構件的合理配置以及連接點處的質量與建筑施工安全質量存在直接的聯系。并且在新型建筑材料問世的同時建筑物的外部設計大都會采用新型建筑材料,例如大理石、瓷磚等。而建筑室內裝飾也會使用到吊頂等技術。這些室內以及立面裝飾本身存在抗震性能的問題,并且其與建筑主體的牢固連接也是抗震設計的關鍵。近幾年,在一些地震災害中,發生過很多下“玻璃雨”的事情,主要原因是目前的技術還不能防止地震中玻璃幕墻的變形,因此,在很多地震中,一些高層建筑的玻璃幕墻會遭到很大的破壞。所以,如果在建筑中采用玻璃幕墻,必須提高建筑構件與連接處的質量,從而保證玻璃幕墻在地震時不會變形。并且在遭遇地震時能夠與建筑物脫離,將所受到破壞的程度降到最小。此外,在內隔墻、玻璃隔斷等構件的設計上也要提高連接點的質量,保證建筑主體連接點的牢固性,從而提高建筑物的抗震性。

2.3關注建筑頂部抗震

建筑屋頂的抗震設計對于高層建筑物有重要的影響。這就要求設計師十分重視建筑頂部的抗震設計,在遭遇地震時,建筑屋頂過高、過重都會加重建筑的變形程度,特別是我國的高層建筑物中普遍存在這樣的問題,如果不重視高層建筑屋頂的抗震設計,發生地震時,下層建筑物會受到很大的影響。如建筑的屋頂與下層建筑的重心沒有位于同一條直線上,那么建筑屋頂的抗側力墻也會與下層建筑的抗側力墻出現分離,當地震出現時則會加劇損壞。因此在高層或超高層建筑設計中應該使用新型高強度輕質的建筑材料,盡可能保證屋頂的重心與下層建筑的重心位于通一條直線。當建筑屋頂的較高時要保證其抗震定性,緩解地震帶來的變形作用。此外頂部結構的設計也適當的選用強度高、剛性均勻輕質的結構材料。

2.4建筑豎向布置

建筑豎向布置主要體現在建筑物的高度結構質量以及剛度的設計中,特別是在高層或超高層建筑中建筑的豎向布置對于建筑抗震設計來說更加重要。建筑樓層的使用功能差異導致建筑物樓層分布的質量和剛度均不一致,例如樓層包括游泳池、會議室、健身房等。樓層的功能導致樓層上下之間的剛度差異過大。高層建筑中剛度最差的樓層的抗震性能最為薄弱,在出現地震時即為變形嚴重的薄弱層。在建筑設計中由于樓層功能不同導致的墻體不連續,柱子不對稱等極大的限制了抗震性能。因此在建筑抗震設計中應該盡量保證豎向的剛度分布靠近,尤其是在結構上剛度轉換層更加要著重注意。

2.5建筑設計需要達到的設計限值

在實際的工程操作以及設計時,一定要嚴格遵循我國相關部門的標準規范要求,例如在8度的防烈度情況下,粘土磚多對地震降級系數固定為2層建筑物的高度不能夠高于18m,建筑層數不能大于6層等。一旦超過相關的規定,就會嚴重影響到建筑物的抗震能力,除此之外,對于建筑物局部的墻體尺度也要控制它的最小值,保與實際情況結合在一起證墻體截面的抗震強度能夠滿足抗震要求,避免墻體在地震時不會出現開裂或者倒塌等破壞情況的發生。

篇2

從我們現在的經濟發展狀況來講,城市人口越來越密集,房屋建筑也越來越多,若突然發生大的地震災難就會造成難以估量的損失。房屋建筑根本性質就是為了給人們提供一個安全舒適的住宿,為人們的一個防護所,避免人們經受風吹日曬以及其他極端天氣。地震則是我們目前所知的自然災害中最嚴重的一個災害,它所給人們造成極大的影響,地震不僅是簡單的震動,也會引起一系列海嘯、泥石流等自然災害,其破壞性不可小覷。由此可見,當一個破壞性極大的災難發生在人們最需要安全的避難所時,我們就不得不重視對于這一災難的防護。再加上我們目前生活水平的提高,我們目前對于房屋建筑的要求應該是更為舒適,使用壽命更強,這就進一步要求我們對于房屋建筑的整體抗震性有更加完善的技術從而更好地保證我們生活的舒適性。

二、房屋建筑結構抗震設計規定

在我國,房屋建筑結構抗震設計的標準一般分為特殊設防類、重點設防類、標準設防類、適度設防類等四個類別,簡稱甲、乙、丙、丁。在甲乙類建筑體系設計中應按高于本地區抗震設防烈度提高一度的要求加強其抗震措施,9度時應按比9度更高要求采取抗震措施。而丙類建筑應按本地區抗震設防確定其抗震措施。在丁類建筑中地震作用應按本地抗震設防烈度確定,但抗震措施(6度除外)允許比本地抗震設防烈度的要求適當降低。在多層和高層現澆鋼筋混凝土房屋的結構類型中,當平面和豎向均不規則的結構或建造于Ⅳ類場地的結構出現時,適用最大高度應適當減少。在鋼筋混凝土房屋抗震等級的要求中,它的抗震設計一般要滿足,如果是框架部分承受的地震傾覆力矩大于結構總地震傾覆力矩的50%的話,那么它的框架抗震等級應按框架結構來定。另外當地下室頂板作為上部結構的嵌固部位時,地下一層的抗震等級應與上部結構相同,地下一層一下抗震構造措施的抗震等級可逐層降低一級,但不應低于四級。地下室中無上部結構的部分,抗震構造措施的抗震等級可根據具體情況采用三級或者四級。對于那些筒體房屋結構抗震的設計要求來說,筒體部分與框架部分樓板一般采用梁板體系。在施工程序及連接構造上我們采取減小結構豎向溫度變形及軸向壓縮對加強層影響措施來解決。當低于9度采用加強層時,加強層的大梁或桁架與周邊框架柱的連接宜采用鉸接或半剛性連接。需要注意的是如果是9度的情況出現時就不要采用加強層了。

三、抗震設計在房屋建筑結構設計中的運用

抗震的設計在整個建筑中可以說是十分關鍵的一環,我們可以從一下幾個方面進行理解,從而體會抗震設計時如何在房屋建筑結構設計中進行運用,進而理解抗震設計在房屋建筑中的重要性。(1)提高房屋建筑結構的抗震力??拐鹪O計,顧名思義,就是保障房屋建筑能夠在地震時將其破壞程度保障到最小范圍。所以在進行房屋建筑結構的設計師,首先就要保障有一個穩固的地基。地基是整個建筑的基礎,其抗震性能也就在一定程度上決定著整個建筑的抗震能力。其次,房屋的整體結構上要建造抗震能力強的結構。比如我們知道的一些幾何圖形具有穩定的效能,我們就可以將其運用在房屋的結構當中。規則、對稱的建筑結構也能有利于保障房屋的穩定性,從而減少地震對于房屋建筑變形的影響。在房屋建筑中的一些小細節上注意到對于抗震的作用。(2)我們完善了房屋的抗震設計之后,可以再從地震一方面來思考如何降低地震作用對房屋建筑的影響。我們目前所采取的辦法就是在建筑物的基礎與主體之間加一個隔震層,也有人提出在建筑物的頂端部分設立一個“反擺”。這樣的設計首先能夠有效避免發生地震時建筑物之間互相碰撞,并且能夠有效緩解在地震來臨時房屋的震動幅度,從而保障房屋內部物品的安全。這樣的設想我們目前已經有所應用,在一些實際的經驗中我們也發現了這一方法的可行性。(3)保證建筑的剛度,建筑結構上的防護以及外部的防護之后,還有保障房屋建筑自身的堅硬程度。首先,就需要考慮到在進行建筑時,使用鋼筋混凝土材料,保障房屋的穩固。其次,就是在我們已有的建筑結構上對整個建筑進行進一步的加固。這一方面我們目前已經有相關的規定,明確告訴我們如何對于不同建筑類型進行不同的外層加固。目前,我們也仍需對于房屋建筑的使用材料進行進一步的探究,努力尋找優化建筑材料的辦法,能夠幫我們在建造房屋時一方面減少不必要的材料浪費,另一方面就是將優質的材料的性能充分地體現在房屋建筑整體的抗震性能上。

四、房屋建筑結構抗震設計措施

1.房屋建筑位置的選擇,房屋建筑位置的選擇在一定意義上來說決定著房屋質量的好壞,一般地地震可以導致房屋建筑周圍地表變化,這樣就會造成地基的開裂,導致房屋出現問題。因此在地理位置的選擇上,設計人員要對房屋建筑進行合理化選擇:如選擇開闊的堅硬場地,考慮場地土的剛度大小和場地覆蓋層的厚度等。2.房屋建筑材料的選擇,抗震性房屋建筑材料要選擇那些質量優等的材料。要綜合考慮保暖、防火等多種因素的存在,比如良好的鋼、鋁合金結構、木質結構及輕型復合材料等建筑材料作為主體材料。3.選擇合適的建筑結構體系,結構體系要滿足穩定性,要與建筑結構相配套。此外要注意建筑物傳力途徑的明確性,以及受力計算的明確性,保障在建筑體系中不使用轉換層,這樣就會保障有地震發生時候避免建筑傾斜或局部受損等現象的發生。4.做好底層框架抗震墻設計,鑒于我國的地震災害多數發生在底層,一般突出表現為“上輕下重”的這樣一個現象,所以在設計時候要突出底層的墻體比框架柱重,框架柱又要比梁重。這樣的設計就會在發生地震時底層破壞的程度比房屋的底層輕得多。5.鋼筋混凝土框架抗震內力設計。我們盡可能做到在地震作用下的框架呈現梁鉸型延性機構,為減少梁端塑性鉸區發生脆性剪切破壞的可能性,對梁端的剪力適當調整,使斜截面受剪承載力高于正截面受彎承載力,做到“強剪弱彎”。在實際運用中如不采取這個措施,柱端很可能比梁端先出現塑性鉸。因此適當調整柱計算內力并增大配筋,使塑性鉸首先出現在梁端,抗震性能較好。

五、結語

地震是人類生活面臨的重要的自然災害,危及著人民的生命與財產安全。在我國,目前人們對于房屋建筑無論是安全性還是舒適性的要求越來越高,房屋建筑行業不斷改善自己的設計和技術,不斷為人們提供更好更優質的服務。在建筑結構設計的時候,必須充分考慮抗震設計,并有采取適當的抗震措施,盡最大可能確保房屋質量,才能減少地震的危害。我們要進行不斷地探索,對于抗災設計有所重視,不斷改善我們的技術,建造更優質的建筑。

篇3

為了提高超高層建筑的抗震性,其足夠的結構側向剛度必不可少。足夠的結構側向剛度不僅可以保障建筑物的安全性、抗震性,還可在一定程度上有效抵抗建筑結構構件的不利受力情況及極限承載力下的安全穩定性。設計超高層建筑的結構抗震側向剛度,應重點從其結構體系和剛度需求進行。

2.1結構設計。結構初步設計根據建筑高度和抗震烈度確定高度級別和防火級別。超高層結構設計首先滿足規范要求的高寬比限值和平面凹凸尺寸比值限值,其次控制扭轉不規則發生:在考慮偶然偏心影響的規定水平地震力作用下,扭轉位移比不大于1.4;最大層間位移角不大于規范限值的0.4倍時,扭轉位移比不大于1.6;混凝土結構扭轉周期比不大于0.9,混合結構及復雜結構扭轉周期比大于0.85。最后設計過程中嚴格控制偏心、樓板不連續、剛度突變、尺寸突變、承載力突變、剛度突變等現象。滿足結構設計規范的同時,還應考慮建筑師的設計意圖和功能需求,同時滿足設備專業設計要求。結構平面的規整程度直接影響著抗震設計的強弱,盡量采用筒體結構,以使得承受傾覆彎矩的結構構件呈現為軸壓狀態,且其中的豎向構件應最大程度的安置在建筑結構的外側。各豎向構件和連接構件的受力合理、傳力明確,降低剪力滯后效應,杜絕抗震薄弱層產生。

2.2結構側向剛度控制。超高層建筑的抗震性能設計主要與結構側向剛度的最大層間位移角和最小剪力限制相關。對于層間位移角限值,其是衡量建筑抗震性的剛度指標之一,地震作用應使得建筑主體結構具有基本的彈性,保證結構的豎向和水平構件的開裂不會過大。同時,因超高層建筑的底部樓層、伸臂加強層等特殊區域的彎曲變形難以起主導作用,所以應采取剪切層間位移或有害層間位移對其變形進行詳細的分析與判斷。對于最小地震剪力,其最重要的兩個影響因素是建筑結構的剛度和質量,當超高層建筑難以達到最小地震剪力要求時,設計人員應該結合具體情況適度的增加設計內力,提高其抗震能力和穩定性,然而,當不能滿足最小地震剪力時,還需通過重新設計或調整建筑結構的具體布置或提高剛度來提高建筑物在地震作用下的安全性,而非單純增高地震力的調整系數。

3超高層建筑的性能化抗震設計

超高層建筑的抗震性能設計,國內主要根據“三個水準,兩個階段”,即“小震不壞、中震可修、大震不倒”。超高層建筑來說,其建筑工程復雜、高度極高、面積大、成本高,一旦受到地震損害,其損失程度會更高,因此,必須充分考慮各方理論、實際情況和專家意見,兼顧經濟、安全原則,定量化的展開超高層建筑的性能化抗震設計。同時,相關文件雖針對超高層建筑結構的性能化設計制定了較具體且系統的指導理念,涉及宏觀與微觀兩個層面。但是,由于結構構件會受到損壞,且損壞與整體形變情況的分析計算都需進行專業的彈塑性靜力或動力時程計算,而目前我國尚未形成相關的定量化的評價體系,因此,設計人員應在積極參考ATC-40和FEMA273/274等規范。此外,對于彎曲變形為主導的建筑結構,在大震作用后應尤其注重構件承載力的復核。

4超高層建筑多道設防抗震設計

除了上述注意事項外,針對超高層建筑進行抗震性設計時,還因注重設計多道的抗震防線。多道抗震防線是指一個由一些相對獨立的自成抗側力體系的部分共同組成的抗震結構系統,各部分相互協同、相互配合,一同工作。當遭遇地震時,若第一道防線的抗側移構件受到損害,其后的第二道和第三道防線的抗側力構件即會進行內力的重新調整和分布,以抵御余震,保護建筑物。目前,我國超高層建筑主要依靠內筒和外框的協同工作來達到提供抗側剛度的目的,包含兩種受力狀態:首先,建筑的內外結構通過樓板和伸臂析架來協調作用,進而使得外部結構承受了較多的傾覆彎矩和較少的剪力,而內筒則承受了較大的剪力和一些傾覆彎矩,廣州東塔就是此受力方式的典型;其次,以交叉網格筒或巨型支撐框架為代表的建筑外部結構,其十分強大,依靠樓板的面內剛度,外部結構即可同時承受較大的傾覆彎矩和剪力,如廣州西塔。

篇4

地震的影響范圍一般情況下都很大,一定區域內的建筑物都會受到一定的破壞。所以建筑物場所的選擇對于結構的抗震設計及其總要。在選擇建筑場地時要注意以下幾個方面:地質結構堅硬、避開有較大坡度的山腳,周圍地勢開闊和避免地震多發地帶。在結構的抗震結構設計中對于建筑物的高度有一定的規定和標準。因此建筑物的高度要嚴格按照國家標準設計。在一些地震多發地區,不僅僅要設計合理科學,還要注重建筑材料的性能。通常情況下,不同高度的建筑對于建筑材料也有一定的要求。一般都采用不同規格的鋼筋混凝土結構。同時,為了提高結構的抗震性,在建筑結構抗震設計中,需要減小柱的軸壓比,增大柱的截面尺寸。從抗震設計的科學角度來講,減小柱軸壓比主要是為了使柱子處于大偏心受壓狀態,從而避免這樣的情況發生比如:縱向受力鋼筋未達到受拉屈服但混凝土卻被壓碎。在建筑的抗震設計時,很多專家認為應該會提高建筑物抗震設計的等級。這主要是考慮到我國是地震多發國家。大型地震容易出現重現?;蚴?0年,或是200年。建筑的抗震設計還存在一些其他的問題,比如在選擇結構體系選型時,盡量可以采取承載能力高、延展性好和充足耗能性能的體系,主要是為了在地震發生時,建筑結構能夠有足夠的抗倒塌能力。同時在結構的剛性和強度方面要水平方向和豎直方向均勻分布。防止出現局部結構出現問題導致整體結構的倒塌。

3抗震設計對結構抗連續倒塌的影響

3.1地震作用及倒塌機制地震

可以造成建筑倒塌是地震造成一切破壞的主要形式,是為結構在外部作用力下的倒塌。連續性的倒塌是因為內部內力發生重新分布而造成的。在地震作用下,構建的受力和質量分布有關系,構建受力分布在整個結構之中。整個結構的非彈性形變能夠很好的減輕地震隊構建的破壞。建筑結構的倒塌開始于結構中大部分梁柱節點的損壞。近而造成其他部件和結構的倒塌和破壞,這也叫做建筑結構的連續性倒塌。

3.2抗震設計與抗連續倒塌設計的關系

抗連續倒塌設計的主要目的在于防止建筑結構倒塌的連續性,連鎖性的發生??拐鹪O計的標準是比較小的地震,建筑沒有出現任何的結構的問題。較大的地震建筑結構不會倒塌。一般中等地震造成的破壞仍舊可以重新的進行結構的維修。抗震設計和抗連續性設計都有一個共同點就是都特別的注重結構的整體性和連續性。在地震作用性,建筑結構造成結構一定的破壞,抗倒塌能力的作用主要是在梁抵抗內力重分布上。然而結構的抗震設計能夠使梁中縱向受力鋼筋增加,也提高了結構的抗倒塌能力。建筑結構的抗震設計和抗連續倒塌設計存在很多的相同點,同時也有不同和相互的影響。

3.3抗震設計對結構抗連續倒塌的影響

目前,抗震設計對抗倒塌能力的影響有兩種不同的觀點:一種認為抗震設計通常是可以取代抗連續倒塌設計的,主要在于抗震設計的結構有整體牢固性的特點,使得結構的抗連續倒塌性能提高。另一種觀點認為,抗震設計和抗連續性的倒塌設計有著不同的出發點和目的,存在較大的差別。對于每一種設計都應該充分的考慮,不能夠想當然的認為抗震設計可以取代抗連續倒塌設計。因為結構抗震設計中的一點點的構造的方法可能增加了。雖然一些構造措施可增加建筑抵抗倒塌的能力,但是畢竟這樣的一點點增加對于整個建筑抵抗連續倒塌能力是微乎其微的。于述強等人通過科學的方法對于抗震設計對于結構抗連續倒塌性的影響。主要采取的方法是建立模型進行分析。采用拆除構件法通進行實驗的主要方法,這也是美國使用比較科學的方法。分別拆除了角柱,中柱,拆除內柱等,然后分析了模型的抗連續性倒塌能力。通過模型實驗分析得到了科學的理論。一是地震作用存在較多的偶然因素在里面,但是有不同于偶然作用,存在較大的差別,所以抗震設計并不能夠取代抗連續倒塌設計。二是雖然抗震設計不能夠期待連續性倒塌設計,但是研究表明抗震設計對于抗連續倒塌能力有著極其重要的意義。在較小級別的抗震結構設計中對于結構抗連續倒塌能力沒有一個明顯的提高,但是當建筑的抗震級別高于8度時,抗震設計結構抗連續倒塌能力得到增強。

篇5

1、建筑結構抗震設計的基本原則

1.1結構構件應具有必要的承載力、剛度、穩定性、延性等方面的性能

(1)結構構件應遵守“強柱弱梁、強剪弱彎、強節點弱構件、強底層柱(墻)”的原則。(2)對可能造成結構的相對薄弱部位,應采取措施提高抗震能力。(3)承受豎向荷載的主要構件不宜作為主要耗能構件。

1.2設置多道抗震防線

(1)一個抗震結構體系應由若干個延性較好的分體系組成,并由延性較好的結構構件連接協同工作。例如框架—剪力墻結構由延性框架和剪力墻兩個分體組成,雙肢或多肢剪力墻體系組成。(2)強烈地震之后往往伴隨多次余震,如只有一道防線,則在第一次破壞后再遭余震,將會因損傷積累導致倒塌??拐鸾Y構體系應有最大可能數量的內部、外部冗余度,有意識地建立一系列分布的屈服區,主要耗能構件應有較高的延性和適當剛度,以使結構能吸收和耗散大量的地震能量,提高結構抗震性能,避免大震時倒塌。(3)適當處理結構構件的強弱關系,同一樓層內宜使主要耗能構件屈服后,其他抗側力構件仍處于彈性階段,使“有效屈服”保持較長階段,保證結構的延性和抗倒塌能力。

1.3對可能出現的薄弱部位,采取措施提高其抗震能力

(1)構件在強烈地震下不存在強度安全儲備,構件的實際承載能力分析是判斷薄弱部位的基礎。(2)要使樓層(部位)的實際承載能力和設計計算的彈性受力的比值在總體上保持一個相對均勻的變化,一旦樓層(部位)的比值有突變時,會由于塑性內力重分布導致塑性變形的集中。(3)要防止在局部上加強而忽視了整個結構各部位剛度、承載力的協調。(4)在抗震設計中有意識、有目的地控制薄弱層(部位),使之有足夠的變形能力又不使薄弱層發生轉移,這是提高結構總體抗震性能的有效手段。

1.4選擇合理的結構形式

抗震結構體系是抗震設計應考慮的關鍵問題。按結構材料分類,目前主要應用的結構體系有砌體結構、鋼結構、鋼筋混凝土結構、鋼-混凝土結構等;按結構形式分類,目前常見的有框架結構、剪力墻結構、框架剪力墻結構、簡體結構等。結構體系的確定受到抗震設防烈度、建筑高度、場地條件以及建筑材料、施工條件、經濟條件等諸多因素影響,是一個綜合的技術經濟問題,需進行周密考慮確定。

2、建筑抗震設計中存在的問題

2.1缺乏前期勘察資料

缺乏巖土工程勘察資料或資料不全。有的在擴初設計階段還缺建筑場地巖土工程的勘察資料,有的在擴初設計會審之后就直接進入了施工圖設計,有的在規劃設計或方案設計會審后就直接進入了施工圖設計。無巖土工程勘察資料,設計缺少了必要的依據。結構的平面布置中外形不規則、不對稱、凹凸變化尺度大、形心質心偏心大,同一結構單元內,結構平面形狀和剛度不均勻不對稱,平面長度過長等。

2.2部分建筑物高度過高

按我國現行高層建筑混凝土結構技術規程規定,在一定設防烈度和一定結構型式下,鋼筋混凝土高層建筑都有一個適宜的高度。在這個高度,抗震能力還是比較穩妥的,但是目前不少高層建筑超過了高度限制。在震力作用下,超高限建筑物的變形破壞性會發生很大的變化,建筑物的抗震能力下降,很多影響因素也發生變化,結構設計和工程預算的相應參數需要重新選取。

2.3地基的選取不合理

由于城市人口的增多和相對空間的縮小,不少建筑商忽略了這一問題,哪里商業空間大就在哪里建。建筑應選擇位于開闊平坦地帶的堅硬土場地或密實均勻中硬土場地,遠離河岸,不應垮在兩類土壤上,避開不利地形、不采用震陷土作天然地基,避免在斷層、山崖、滑坡、地陷等抗震危險地段建造房屋。建筑的地基選取不恰當可能導致抗震能力差。

2.4材料的選用不科學,結構體系不合理

在地震多發區,采用何種建筑材料或結構體系較為合理應該得到人們的重視。由于我國建筑結構主要以鋼筋混凝土核心筒為主,變形控制要以鋼筋混凝土結構的位移限值為基準。但因其彎曲變形的側移較大,靠剛度很小的鋼框架協同工作減小側移,不僅增大了鋼結構的負擔,而且效果不大,有時不得不加大混凝土的剛度或設置伸臂結構,形成加強層才能滿足規范側移限值。

2.5抗震設防烈度較低

許多專家提出,現行的建筑結構設計安全度已不能適應國情的需要,建筑結構設計的安全度水平應該大幅度提高。我國現行抗震設防標準是比較低的,中震相當于在規定的設計基準期內超越概率為lO%的地震烈度,較低的抗震設防烈度放松了建筑的抗震要求。

2.6平面布局的剛度不均

抗震設計要求建筑的平、立面布置宜規正、對稱,建筑的質量分布和剛度變化宜均勻,否則應考慮其不利影響。但有的平面設計存在嚴重的不對稱:一邊進深大,一邊進深?。灰贿呍O計大開間,一邊為小房間;一邊墻落地承重,一邊又為柱承重。這些都對抗震極為不利。

3、建筑結構抗震設計的措施

3.1建筑選址要正確。

避免抗震危險地段,選擇對抗震有利的場地、地基和基礎在進行設計時,應根據工程需要,掌握地震活動情況和工程地質的有關資料,作出綜合評價,宜選擇堅硬土或開闊平坦密實均勻的中硬土等有利地段;避開軟弱土、液化土、河岸和邊坡邊緣,平面分布上成因、巖性、狀態明顯不均勻的土層等不利地段;同一結構單元不宜設置在性質截然不同的地基土上,也不宜部分采用天然地基,部分用樁基,當地基有軟弱黏性土、液化土、新近填土或嚴重不均勻土層時,宜加強基礎的整體性和剛度。

3.2合理的確定平立面布置。

建筑物的動力性能基本上取決于它的建筑布局和結構布置。建筑布局簡單合理,結構布置符合抗震原則,從而確保房屋具有良好的抗震性能。建筑物的平、立面布置宜規則、對稱,質量和剛度變化均勻,避免樓層錯層。對體形復雜的建筑物合理設置變形縫,在結構設計時要進行水平地震作用計算和內力調整,并應對薄弱部位采取有效的抗震構造措施,嚴格控制建筑物的高度和高寬比。

3.3 結構選型和結構布置要合理。

結構選型根據建筑的重要性、設防烈度、房屋高度、場地、地基、基礎、材料和施工等因素,經技術、經濟條件比較綜合確定。單從抗震角度考慮,作為一種好的結構形式,應具備下列性能:延性系數高;勻質性好;正交各向同性;構件的連接具有整體性、連續性和較好的延性,并能發揮材料的全部強度。結構布置遵循的原則是平面布置力求對稱,使構件分配的力均勻;豎向布置力求均勻,盡可能使其豎向剛度、強度變化均勻,避免出現薄弱層,并應盡可能降低房屋的重心。

3.4剛度、承載力和延性要匹配。

當結構具有較高的抗力時,其總體延性的要求可有所降低;反之,較低的抗力需要較高的延性要求相配合。地震時建筑物所受地震作用的大小與其動力特性密切相關,具有合理的剛度和承載力分布以及與之匹配的延性。提高結構的抗側剛度,往往是以提高工程造價及降低結構延性指標為代價的。要使建筑物具有很強的抗倒塌能力,最理想的是使結構中的所有構件都具有較高的延性,然而實際工程中很難做到。有選擇地提高結構中的重要構件以及關鍵桿件的延性是比較經濟有效的辦法。

4、結束語

抗震設計問題是一個非常復雜的過程,涉及面非常廣泛,需要在設計過程中考慮全面。在以后的設計過程中,還有許多方面需要我們進一步的探討和研究,我們也期待有更多新型抗震技術應用于建筑中來,減輕地震帶來的危害。

篇6

引言:由于開發商對于建筑物的地震破壞原因和破壞程度沒有足夠的了解,導致建筑物在抗震設計方面存在十分大的困難。所以,我們不僅要追求建筑物的造型美觀,還有考慮建筑物的抗震設計。要為人們營造一個安全舒適的生活環境。針對地震問題我們要在房屋結構找突破點。只有設計出抗震、牢固的建筑結構,才能保障人類的人身安全。

一、房屋建筑結構設計相關因素分析

建筑物按建筑結構分類可分為:砌體結構、磚混結構、鋼筋混凝土結構、鋼結構等。建筑物結構形式的確定,與其抗震能力是密切相關的。相關的科學研究表明,在遭遇相同等級的地震災害后,采用鋼結構的建筑物受損壞的程度明顯要低于鋼筋混凝土結構的建筑物。日本也是一個多地震的國家,其鋼結構的房屋建筑占全國建筑的半數以上,也是其在遭遇地震后人員傷亡較少的主要原因之一。目前,我國的建筑抗震系數系統依舊是不完善的,不能確保結構設計人員準確、有效地應用。歷次地震災害表明,影響抗震系數的因素是很多的,比如其抗震的等級、建筑物的類別、場地類別、建筑物總高度等。為了促進其實際工作的需要,應對各種相關因素和相關參數展開一系列的優化分析,得到一個最優的設計方案。房屋建筑的抗震性能與許多因素有關系,比如其建筑的體型設計。汶川地震震害表明 , 許多平面形狀復雜 , 例如平面上的較大外凸和凹陷、不對稱的側翼布置等在地震中都遭到了不同程度的破壞。海城地震和唐山地震中有不少這樣的震例。而平面形狀簡單規則、傳力途徑明確的建筑在地震中都未出現較重的破壞;有的甚至保持完好。上述情況表明,很多損害嚴重的建筑物的設計方案不是很合理,如果能夠選擇一個好的設計方案,震后損失可能會減小很多。

二、建筑結構抗震設計的要點

在我國,對于建筑物抗震設計的要求是采取“三水準設防、兩階段設計”的標準。在這種標準的影響下,建筑結構設計經歷了柔性設計、剛性設計、結構控制設計和延性設計四個階段。但是由于地震產生了很多不確定因素,導致建筑結構存在非常大的偶然性和復雜性,甚至還有計算模擬與實際情況的不符的情況出現,導致計算結果誤差很大。所以,我們不僅要考慮建筑物良好的概念設計,還要提高建筑結構抗震性能。具備完善的建筑結構體系。一個良好的建筑體系,對于建筑業是十分有必要的。在實際的建筑抗震設計時,要注重依賴建筑結構體系的協同工作,從而使建筑物中的每個構件都能夠共同工作。所以,這就需要建筑結構構件在允許受力的情況下不僅能夠具有良好的耐久性,還要能夠在高壓,強力的作用下共同工作。在砌體結構的建筑中避免建筑結構單純的依靠建筑結構自身剛度來承受載荷。充分提高建筑物材料利用率的協同工作。從建筑物抗震設計經驗表明,材料的利用率越高,結構的協同工作能力也就越高。

三、建筑結構抗震設計中的主要問題

1、建筑結構體系的合理選擇。建筑結構設計中最主要的一方面就是結構體系的選擇,它的合理選擇決定著建筑物的安全性。對于建筑結構體系的合理選擇應注意以下兩個方面的設計:(l)體系應具有合理的地震傳遞途徑和明確的計算簡圖。在這個過程當中,房屋內部結構的布置,應使得更多的受力在主梁上,并且使垂直重力以最短的路徑傳遞到主受力部位;豎向構件的布置,要讓豎向構件的壓應力接近均勻(2)建筑體系應具有合理的強度。一個良好的建筑物必須要有合理的強度進行支撐,一些建筑的薄弱部位要由合理的強度防止:在框架結構設計方面,要保證節點不受破壞,要使梁、柱端的塑性盡可能的分散;對于容易出現的薄弱環節,必須提高薄弱部位的抗震能力。

2、抗震場地的選擇??拐饒龅氐倪x擇直接影響建筑物的抗震設計工作,應選擇有利的抗震場地,要避開對建筑抗震不利的地段。地震對于地面的危害是十分巨大的。地震造成的地裂和地表錯動,直接使得房屋倒塌,結構損壞。所以,選擇抗震場地不能選擇易液化土地、軟弱場地、狀態明顯不均勻等場地;如果不能避免不理的場地,可以采用適當的抗震措施進行加強強度:對于地震時有可能存在的地裂或者滑坡的場地,必須采取科學合理的措施進行穩定;如果地基需要建立在最近填土和土層十分不均勻或者軟弱粘性土層時,必須采用樁基、地基加固和加強基礎和上部結構的處理措施。

建筑工程選址應注意的問題:四川汶川地震的震害情況表明,那些建在斷裂帶上和斷裂帶沿線的建筑物都完全倒塌,破壞極其嚴重。因此,建筑物建設地點的確定是極其重要的,它是決定建筑物抗震性能的前提條件,只有正確的選址方案,才能保證建筑物滿足建筑抗震設計的相關要求,保證其安全性、可靠性。選擇建筑場地時應根據工程的實際需要和工程地質、地震活動情況等相關資料,選擇對建筑物抗震有利的地段,避開對抗震不利的地段,嚴禁在地震斷裂帶及斷裂帶沿線附近建造甲、乙、丙類建筑物。應避開地震時可能發生山體滑坡、崩塌、地陷、地裂、泥石流等次生災害地段。汶川地震發生時,北川老縣城發生規模較大的山體滑坡,王家巖山體在地震作用下瞬間崩塌,崩塌的山體傾瀉而下瞬間摧毀山下及周邊的建筑物,北川老縣城的 5個街區的大部分建筑物被厚厚的土體掩埋,造成大量人員傷亡。這樣的結果不是靠提高抗震設防等級、提高建筑物的抗震性能和措施所能避免的。所以避開此類危險地段,才能避免因選址不當所造成的嚴重的人員傷亡和財產損失。

3、重視建筑平面布置的規則性。在建筑平面布置方面,應盡可能的采用抗震概念設計原則,不能使用嚴重不規則的設計方案。有關資料表明,對于一些樓板布局不夠規范時,要采取相應的樓板計算模型;對于平面不規則、立體不規則的建筑結構,必須采用空間結構計算模型。結構的規則性具體分為三個部分:第一是建筑主體必須具備良好的抗壓能力,側力結構不能變形,要盡可能的均勻;第二是建筑主體抗側力結構的平面布置,建筑主體抗側力結構的布置要注重同一側的強度要均勻;第三是建筑主體抗側力結構的布置要與周圍的結構具有相同的剛度,必須保障良好的抗扭剛度。總之,重視建筑平面布置的規則性對于建筑的抗震設計十分重要。

建筑物平面設計應該注意的問題:建筑物的平面布置規則與否、是否對稱和具有良好的整體性,也是影響建筑物抗震性能的重要因素之一。例如酒店、公寓、商場、住宅、體育館等不同建筑物的使用功能不同,其平面布置也千變萬化,其柱距、開間、進深、隔墻的布置、樓梯的位置、電梯井的布置等也有很大差別,如果柱子、墻體等布置不對稱、不規則,使得平面剛度急劇變化,遭遇地震后,將發生嚴重的扭轉破壞。因此,建筑設計時,應使柱子和抗震墻(剪力墻)等抗側力構件均勻、對稱布置,剛度較大的樓梯間、電梯井應盡可能居中布置,不要布置在建筑物的轉角處。要盡可能作到使結構的質量和剛度分布均勻、對稱協調,避免突變,防止在地震作用下產生扭轉效應。

4、建筑物豎向設計應該注意的問題

建筑物的豎向布置設計也將對其抗震性能產生巨大的影響。近些年來,由于國民經濟的迅速發展,商場、寫字樓等高層、超高層建筑越來越多,其要求底層或下面幾層大開間、大空間,這就形成了建筑物下面幾層柱子和抗震墻(剪力墻)較少,層間質量和抗側剛度沿建筑物高度分布不均勻,在抗側剛度較差的樓層形成了對抗震極為不利的薄弱層,在地震作用下,引起較為嚴重的破壞。汶川地震中,有許多底層框架—抗震墻砌體房屋底層柱子直接破壞,建筑物由原來的 4 層直接變為 3層。主要原因就是,沿著建筑物高度方向,質量和抗側剛度發生突變,底層柱子較少,抗側剛度較小,地震作用下,底層柱子直接壞掉。所以,建筑物的豎向布置設計時,應盡可能使其沿豎向的抗側剛度分布比較均勻,抗震墻(剪力墻)并使其能沿豎向貫通到建筑底部,不宜中斷或不到底,盡量避免某一樓層抗側剛度過小,以避免在地震作用下,因薄弱層的存在引起建筑物的倒塌。

四、提高建筑結構抗震能力的建議

建筑結構抗震設計是在不斷的實例驗證中逐漸分析,日益總結歸納出來的。在目前的房屋建設當中,抗震設計是十分有必要的。所以,建筑抗震設計在建筑設計中應該引起十分重視。為了設計出高抗震性的建筑物,在我看來需要注意以三點:第一,科學合理的建筑布局是不可缺少的,于此同時還有保證各個主要受力物體處在同一平面,在地震來臨時要能禁得住壓力。在墻段沒有發揮作用之前,需要依照“強墻弱梁”的標準實施加強建筑物的承受力,防止地震強大的破壞力。第二,要按照不同的抗震等級,對梁、柱以及墻的節點使用相對應的抗震措施,確保建筑結構在地震作用下達到相關標準。為了保障鋼筋混凝土在地震作用下不受破壞,要科學合理的添加合適的化學試劑,加強混凝土的強度與剛度,還有注意構造配筋的要求,尤其是要加強節點的構造措施。第三,必須設置多層抗震防線,一個良好的抗震體系對于地震的壓力是十分重要的??拐痼w系就如果人類身體的三道防線,不同等級的地震采取不同的防線。第一層不行,還有多層防線保護。這樣的保護體系對于防震將是十分有效的。

五、結語

通過多年對于建筑結構抗震設計的研究,我國已經逐漸形成了自己的一套較為先進的、有效的抗震設計方法并日趨成熟,但是也有很多不足之處,需要我們在實踐中加以完善。總之,要確保建筑結構中抗震設計能高效完成,應在遵循相關建筑抗震規范要求的原則上,進行科學的、合理的設計,確保建筑物具有穩定的、可靠的抗震性能,達到建筑物小震不壞、中震可修、大震不倒的標準。我們有理由相信,隨著相關技術人員抗震設計水平的不斷提高,我國的建筑工程結構抗震設計也會邁上更高的臺階。

參考文獻:

篇7

一、基于性能的抗震設計的產生

20世紀初期,日本的森房吉教授(1868―1923)在對當時的地震災害和理論認識進行研究之后,提出了最早的結構抗震設計方法。在之后的一百年間,隨著科學技術的不斷發展,人們對地震的反映特征和發展特征的研究和把握不斷深入,結構抗震設計理論及方法也在不斷進步當中。

目前 “大震不倒,中震可修,小震不壞”,作為抗震結構設計指導思想被國際普遍認可。至此,抗震結構設計可以說已經取得了顯著的進步,此類建筑在地震中也表現出較好的抗震性能。但是,目前的三個水準的設計理念主要是以保護人類生命安全為目的,對于地震造成的其他破壞不能很好地進行控制。尤其是現代社會的高速發展使得大量人群、財富和資源可能集中在某一區域,如大城市中。在這些區域一旦發生地震,將會造成巨大的經濟損失,對生還者的心里造成嚴重打擊,也是十分不利于震后重建工作的開展。因此,要求人們在進行抗震設計時不僅防止地震對生命安全造成傷害,也要盡可能減少房屋倒塌對其他方面造成破壞?;谝陨峡紤],在1994年美國洛杉磯大地震和1995年日本阪神大地震之后,基于性能的抗震結構設計被廣泛研究推廣,并被認為是未來抗震結構設計的主要指導思想。

這項設計最早出現在橋梁抗震設計中,用量化的抗震指標來控制抗震性能,從而改進傳統的設計理念。1995年,這一理念被美國放眼21世紀委員會提出了之后,便得到了美國政府的大力支持,日本、新西蘭、澳大利亞、英國、智利等國家也先后投入研究。

二、基于性能抗震設計的特點

通過與現行抗震設計理念的對比,可得到基于性能抗震設計理念的特點。

1.采用多級設防。與現階段“大震不倒、中震可修、小震不壞”的三階段設防目標

相比,基于性能的抗震設計注重多級防護,注意保護建筑的內部設施與非結構件,從而達到了在地震發生時既保護業主安全又減輕了業主和社會的經濟損失。

2.投資準則效益。投資準則效益反映了抗震設計思想的重要轉變,是基于性能抗震設計的一個基本原則。即從只注重安全變為同時注重安全、經濟等多個方面。根據這一準則,結構設計按照結構性能的要求,考慮到所擁有的所有資源,在安全和經濟之間找到平衡、合理的切入點,得到優化的最佳方案。

三.設防水平

1.地震設防水平。地震設防水平是指在未來可能作用于建筑結構的地震強度大小。由于地震設防水平直接決定了建筑物的抗震能力,所以它在基于性能的抗震設計的理論中占有重要的位置,應充分考慮到已優化的經驗基礎,并根據地震參數具體確定。

2.結構性能水平。結構性能水平是在預期地震等級的作用下對建筑物破壞的最大程度。由于基于性能的抗震設計是考慮到結構構件、內部設施、非結構構件、裝修等多種因素,因此除了應該對對建筑主體結構帶來的損失有控制力外,還要充分考慮到對非主體的損壞的控制。所以說,能兼顧主體與非主體結構破壞程度的結構性能水準才是科學的、合理的。

四、基于性能抗震設計的方法

目前基于性能的抗震設計方法主要有:位移影響系數、直接位移、能力譜設計等方法。

1.位移影響系數法。該方法基于結構性能設計,即通過分析預先得到位移的最大期望值,然后利用模態、等效的方法進行確定,從而修正此系數。但是此方法目前也存在著一些問題,比如無法具體地體現出抗震水準與具體結構、樓層的損壞情況。

2.直接位移設計法。本方法適用于結構性能設計,即根據地震等級預期計算位移,使結構達到預期位移。本方法最大的特點是概念簡單,但是只能從建筑材料的極限變化確定相應數值,不能考慮到預期之外的地震效應。

3.能力譜法。能力譜法是將地震反應譜與能力譜曲線轉化成需求譜,從而評判該建筑的抗震性能。本方法側重于對結構的實際性能進行評估與檢驗。另外,能力譜法只適用于分布比較均勻且平面結構可化簡的結構。

總結:

基于性能的抗震設計是一個涵蓋范圍很廣的體系,與現行抗震設計相比,它具有以下優點:

(1)基于性能的抗震設計目標多而且具體,具有更強的可操作性與適應性,也具有更

大的實際作用意義。

(2)基于性能的抗震設計提供給了設計者更大的靈活性。在符合相關規定與要求的前

提下,設計者可自行選擇能實現業主抗震目標的設計方案與相對應的結構措施,充分發揮了設計者的創造性與創新性。

(3)基于性能的抗震設計將之前單一的以保障業主生命安全的抗震目標轉變為在不同

的地震風險等級下滿足不同的抗震需求,并綜合了經濟、安全等多方面因素,充分考慮到了投資、震后損失、災后重建、社會效益與業主的承受能力等多方面因素,更符合當今社會的需求。

基于性能的抗震建筑結構設計思路已經成為了未來抗震設計的主要發展思想,,得到了國際社會的廣泛認可。特別是美日兩國,在這一方面進行了大量的研究,并得到了一定成果。我國在這個項目的研究上起步較晚,但是為達到與國際社會同步,我國與國際社會上在這方面取得先進成果的專家多次進行學術交流,中國許多高校目前也已經開展了此項研究,從而發展出適合我國國情的基于性能的抗震設計方法。

參考文獻

[1]歐進萍,何政,吳斌,邱法維.鋼筋混凝土結構基于地震損傷性能的設計[J].地震工程與工程振動,1999(1).

[2]孫俊,劉錚,劉永芳.工程結構基于性能的抗震設計方法研究[J].四川建筑科學研究,2005(3).

[3]小谷俊介,葉列平.日本基于性能結構抗震設計方法的發展[J].建筑結構,2000(6).

[4]韓小雷,鄭宜,季靜,黃藝燕.美國基于性能的高層建筑結構抗震設計規范[J];.地震工程與工程振動,2008(1).

篇8

地震是一種隨機振動,所以建筑結構設計人員為防止、減少地震給建筑造成的危害, 就需要分析研究建筑抗震問題不斷總結工程經驗,妥善處理這一工程問題。

一、實行建筑抗震設計規范,總結工程經驗妥善處理工程問題:

(一)選擇有利的抗震場地

地震造成建筑物的破壞, 除地震動直接引起的結構破壞外,場地條件也是一個重要的原因。地震引起的地表錯動與地裂,地基土的小均勻沉陷, 滑坡和粉、砂土液化等。科技論文。因此,應選擇對建筑抗震有利的地段, 應避開對抗震不利地段。當無法避開時, 應采取適當的抗震加強措施,應根據抗震設防類別、地基液化等級,分別采取加強地基和上部結構整體性和剛度、部分消除或全部消除地基液化沉陷的措施; 當地基主要受力層范圍內存在軟弱粘性土層、新近填土和嚴重不均勻土層時,應估計地震時地基不均勻沉降或其他不利影響, 采用樁基、地基加固和加強基礎和上部結構的處理措施; 對于地震時可能導致滑移或地裂的場地,應采取相應的地基穩定措施。

(二)優化的平面和立面布置

關于建筑結構設計的平面與立體結構, 我們根據認為有以下幾個方面可以參考:

1、結構的簡單性。結構簡單是指結構在地震作用下具有直接和明確的傳力途徑。只有結構簡單,才能夠對結構的計算模型、內力與位移分析, 限制薄弱部位的出現易于把握,因而對結構抗震性能的估計也比較可靠。

2、結構的剛度和抗震能力。水平地震作用是雙向的,結構布置應使結構能抵抗任意方向的地震作用。通常, 可使結構沿平面上兩個主軸方向具有足夠的剛度和抗震能力, 結構的抗震能力則是結構強度及延性的綜合反映。結構剛度的選擇既要減少地震作用效應又要注意控制結構變形的增大, 過大的變形會產生重力二階效應, 導致結構破壞、失穩。論文參考網。

3、結構的整體性。在高層建筑結構中,樓蓋對于結構的整體性起到非常重要的作用,樓蓋相當于水平隔板,它不僅聚集和傳遞慣性力到各個豎向抗側力子結構, 而且要求這些子結構能協同承受地震作用, 特別是當豎向抗側力子結構布置不均勻或布置復雜或抗側力子結構水平變形特征不同時, 整個結構就要依靠樓蓋使抗側力子結構能協同工作。

(三)設置多道設防的抗震結構體系

多道抗震防線, 是指在一個抗震結構體系中, 一部分延性好的構件在地震作用下, 首先達到屈服, 充分發揮其吸收和耗散地震能量的作用, 即擔負起第一道抗震防線的作用, 其他構件則在第一道抗震防線屈服后才依次屈服,從而形成第二、第三或更多道抗震防線, 這樣的結構體系對保證結構的抗震安全性是非常有效的。同時底框建筑底層高度不宜太高, 應控制在4.5m 以下。高度加大, 底層剛度減小, 重心提高, 使框架柱的長細比增大, 更容易產生失穩現象。論文參考網。而且由于高度較大,很多建筑房間被業主一層改成了兩層, 造成了較大的安全隱患??萍颊撐?。宜具有合理的剛度和強度分布, 避免因局部削弱或突變形成薄弱部位.產生過大的應力集中或塑性變形集中;可能出現的薄弱部位, 應采取措施提高抗震能力。

(四)保證結構的延性抗震能力

合理選擇了建筑結構后, 就需要通過抗震措施來保證結構確實具有所需的延性抗震能力,從而保證結構在中震、大震下實現抗震設防目標, 系統的抗震措施包括以下幾個方面內容。強柱弱梁: 人為增大柱相對于梁的抗彎能力,使鋼筋混凝土框架在大震下,梁端塑性鉸出現較早,在達到最大非線性位移時塑性轉動較大; 而柱端塑性鉸出現較晚, 在達到最大非線性位移時塑性轉動較小,甚至根本不出現塑性鉸。從而保證框架具有一個較為穩定的塑性耗能機構和較大的塑性耗能能力。強剪弱彎: 剪切破壞基本上沒有延性, 一旦某部位發生剪切破壞, 該部位就將徹底退出結構抗震能力, 對于柱端的剪切破壞還可能導致結構的局部或整體倒塌。因此可以人為增大柱端、梁端、節點的組合剪力值, 使結構能在大震下的交替非彈性變形中其任何構件都不會先發生剪切破壞。

(五)合理的建筑結構參數設計計算分析

對于復雜結構進行多遇地震作用下的內力和變形分析時, 應采用不少于兩個不同的力學模型,目前主要有兩種計算理論: 剪摩理論和主拉應力理論, 它們有各自的適用范圍:磚砌體一般采用主拉應力理論,而砌塊結構可采用剪摩理論。對計算機的計算結果, 應經分析判斷確認其合理、有效后方可用于工程設計。結構計算控制的主要計算結果有結構的自振周期、位移、平動及扭轉系數、層間剛度比、剪重比、有效質量系數等。另外, 地下室水平位移嵌固位置,轉換層剛度是否滿足要求等, 都要求有層剛度作為依據。復雜高層建筑抗震計算時,宜考慮平扭耦聯計算結構的扭轉效應, 振型數不應小于15,對多塔結構的振型數不應小手塔樓數的9 倍, 且計算振型數應使振型參與質量不小于總質量的90%??傊? 高層結構計算很難一次完成,應根據試算結果, 按上述要求多次調整,才能得到較為合理的計算結果,以保證建筑物的安全。

二、高層建筑抗震設計中經常出現的問題

(一)部分建筑物高度過高

按我國現行高層建筑混凝土結構技術規程規定,在一定設防烈度和一定結構型式下,鋼筋混凝土高層建筑都有一個適宜的高度。在這個高度,抗震能力還是比較穩妥的,但是目前不少高層建筑超過了高度限制。在震力作用下,超高限建筑物的變形破壞性會發生很大的變化,建筑物的抗震能力下降,很多影響因素也發生變化,結構設計和工程預算的相應參數需要重新選取。

(二)地基的選取不合理

由于城市人口的增多和相對空間的縮小,不少建筑商忽略了這一問題,哪里商業空間大就在哪里建。高層建筑應選擇位于開闊平坦地帶的堅硬土場地或密實均勻中硬土場地,遠離河岸,不應垮在兩類土壤上,避開不利地形、不采用震陷土作天然地基,避免在斷層、山崖、滑坡、地陷等抗震危險地段建造房屋。高層建筑的地基選取不恰當可能導致抗震能力差。

(三)材料的選用不科學,結構體系不合理

在地震多發區,采用何種建筑材料或結構體系較為合理應該得到人們的重視。由于我國建筑結構主要以鋼筋混凝土核心筒為主,變形控制要以鋼筋混凝土結構的位移限值為基準。但因其彎曲變形的側移較大,靠剛度很小的鋼框架協同工作減小側移,不僅增大了鋼結構的負擔,而且效果不大,有時不得不加大混凝土的剛度或設置伸臂結構,形成加強層才能滿足規范側移限值。

(四)較低的抗震設防烈度

許多專家提出,現行的建筑結構設計安全度已不能適應國情的需要,建筑結構設計的安全度水平應該大幅度提高。我國現行抗震設防標準是比較低的,中震相當于在規定的設計基準期內超越概率為lO%的地震烈度,較低的抗震設防烈度放松了高層建筑的抗震要求。論文參考網??萍颊撐?。

三、結語

篇9

一.引言

隨著我國現代高層建筑高度的不斷增加,建筑的功能也日趨復雜,在高層建筑豎向立面上的造型也呈現多樣化。在某些建筑結構中,通常會要求上部的框架柱或是剪力墻不落地,在建筑結構中需要設置較大的橫梁和桁架來作為支撐,甚至有時要改變豎向的承重體系,此時就要求設置轉換構件,將上部和下部兩種不同的豎向結構進行過度和轉換,通常這種轉換構件占據約為一至二層,這種轉換構件即為轉換層。結構轉換層在很大程度上改變了建筑的結構體系,在進行設計時要慎重考慮。

二.轉換層結構施工特點

由于高層建筑結構下部樓層受力很大,上部樓層受力較小,正常的結構布置應是下部剛度大、墻體多、柱網密,而到上部則逐漸減少墻體及柱的布置,以擴大柱網。這樣,結構的正常布置與建筑功能對空間的要求正好相反。因此,為了適應建筑功能的變化,就必須在結構轉換的樓層設置水平轉換構件,部分豎向構件在轉換層處被打斷,使豎向力的傳遞被迫發生轉折,而轉換層就是實現轉折功能的大型水平構件。轉換層的結構形式一般有以下幾種構成:箱式轉換、梁式轉換、空腹桁架式轉換、桁架式轉換、板式轉換和斜撐式轉換等。 帶轉換層的高層建筑是一受力復雜、不利抗震的結構體系,該結構及其支撐系統有自身的特點。眾多高層建筑采用梁式轉換層進行結構轉換,這主要是由于:

1.轉換層設計帶轉換層的多高層建筑,轉換層的下部樓層由于設置大空間的要求,其剛度會產生突變,一般比轉換層上部樓層的剛度小,設計時應采取措施減少轉換層上、下樓層結構抗側剛度及承載力的變化,以保證滿足抗風、抗震設計的要求。轉換構件為重要傳力部位,應保證轉換構件的安全性。2.8度抗震設計時除考慮豎向荷載、風荷載或水平地震作用外。還應考慮豎向地震作用的影響,轉換構件的豎向地震作用,可采用反應譜方法或動力時程分析方法計算;作為近似考慮,也可將轉換構件在重力荷載標準值作用下的內力乘以增大系數1.1。

2.經濟指標

從抗剪和抗沖切的角度考慮,轉換板的厚度往往很大。一般可2.0m~2.8m 。這樣的厚板一方面重量很大,增大了對下部垂直構件的承載力設計要求,另一方面本層的混凝土用量也很大。

轉換梁常用截面高度為1.6~4.0m,只有在跨度較小以及承托的層數較少時才轉換梁常用截面高度0.9~1.4m,而跨度較大且承托較大且承托的層數較多時,或構件條件特殊時才采用較大的截面高度4.0~8.2m 。

3.抗震性能

由于厚板集中了很大的剛度和質量,在地震作用下,地震反應強烈。不僅板本身受力很大,而且由于沿豎向剛度突然變化,相鄰上、下層受到很大的作用力,容易發生震害。以往的模型振動臺試驗研究表明,厚板的上、下相鄰層結構出現明顯裂縫和混凝土剝落。另外,試驗還表明,在豎向荷載和地震力共同作用下,板不僅發生沖切破壞,而且可能產生剪切破壞,板內必須三向配筋。

4.轉換層結構的基本功能

從結構角度看,轉換層結構的功能主要有:

(1)上、下層結構形式的轉換

這種轉換層廣泛用于剪力墻結構和框架--剪力墻結構,將上部的剪力墻轉換為下部的框架。

(2)上、下層結構軸網的轉換

轉換層上下結構形式沒有改變,但通過轉換層使下層柱的柱距擴大,形成大柱網,這種形式常用于外框筒的下層以形成較大的入口。

(3)下、下層結構形式和結構軸網同時轉換

上部樓層剪力墻結構通過轉換層改變為下部框架結構的同時,下部柱網軸線與上部剪力墻的軸線錯開,形成下、下結構不對齊的布置。

5.轉換層結構設計方法存在的問題

目前在多、高層建筑中,絕大多數的開發商都會要求建筑物具有完備的建筑功能,建筑師在建筑設計中也往往首先想到采用結構轉換層來完成上、下層建筑物功能的轉換。但一些結構設計人員在實際進行轉換層設計時顯得無從下手,沒有可操作、可遵循的設計思路、設計原則來進行結構設計。造成這種現象的主要原因是當前轉換層設計沒有相關的可遵循的設計準則,使設計人員難以進行結構選型、截面確定、計算模型確定、計算方法確定,計算結果應用以及配筋方法的實施等一系列結構設計步驟。這種現狀與我國當前高層建筑的迅猛發展足不適應的。轉換結構層具有與一般結構層相比結構重量大、結構層剛度大、幾何尺寸超大、受力復雜等特點。這樣的尺寸和重量意味著轉換結構組成了建筑物的主要構件。它們設計的是否合理、安全、經濟對整個結構的安全性、結構造價、施工費用等有著重要影響?,F有的轉換層設計方法,主要是針對形式簡單、受力相對簡單的轉換梁,對于受力復雜的轉換梁還沒有深入研究。即便是對于形式簡單的轉換梁,其受力性能也沒有完全清楚,而往往是互相混淆,設計概念小明確,設計原則不準確。

三. 帶結構轉換層的高層建筑結構設計

1. 帶轉換層的高層建筑結構設計原則

高層建筑中轉換層的設置造成建筑物豎向剛度的突變,地震作用時在轉換層上下容易形成薄弱環節,對結構抗震不利,故轉換層結構在設計時應遵循以下原則:

(1)為防止沿豎向剛度變化過于懸殊形成薄弱層,設計中應考慮使上、下層剛度比γ≤2,盡量接近1。這樣才能保證結構豎向剛度的變化不至于太大,使上柱有良好的抗側力性能,減少豎向剛度變化,有利于結構整體受力。

(2)盡可能減少需結構轉換的豎向構件,直接落地的豎向構件越多,轉換結構越少,轉換層造成的剛度突變就越小,對結構抗震更有利。

(3)設計中應保證轉換層有足夠的剛度,一般應使梁高度不小于跨度的1/6,才能保證內力在轉換層及其下部構件中分配合理,轉換梁、剪力墻柱有良好的受力性能,能較好的起到結構轉換作用。

(4)必須控制框支剪力墻與落地剪力墻的比例,當剪力墻較多且考慮抗震時,橫向落地剪力墻數目與橫向墻總數之比不宜少于50%,非抗震時不宜少于30%。

(5)轉換層以上的剪力墻和柱子應盡量對稱布置,梁上立柱應盡量設在轉換梁跨中,以免轉換梁變形時,在梁上立柱的柱腳處產生較大轉角,帶動立柱柱腳產生較大變形,引起柱的彎曲及剪切,使立柱產生很大的內力而超筋。

(6)轉換層結構在高層建筑豎向的位置宜低不宜高。轉換層位置較高時,易使框支剪力墻結構在轉換層附近的剛度、內力和傳力途徑發生突變,并易形成薄弱層,對抗震設計不利,其抗震設計概念與底層框支剪力墻結構有較大差異。當必須采用高位轉換時,應控制轉換層下部框支結構的等效剛度,即考慮彎曲、剪切和軸向變形的綜合剛度,這對于減少轉換層附近的層間位移角及內力突變是十分必要的,效果也很顯著。另外,對落地剪力墻間距的限制應比底層框支剪力墻結構更嚴一些。對平面為長矩形的建筑,落地剪力墻的數目應多于全部橫向剪力墻數目的一半。

2.轉換層的應用

(1)梁式轉換層

作為目前高層建筑結構轉換層中應用最廣的結構形式,它具有傳力直接明確及傳力途徑清晰,同時受力性能好、工作可靠、構造簡單、計算簡便、造價較低及施工方便等優點。轉換梁不宜開洞,若必須開洞則洞口宜位于梁中和軸附近。轉換梁有托柱與托墻兩種形式,其截面設計有4種方法,即普通梁截面設計法、偏心受拉構件截面設計法、深梁截面設計法和應力截面設計法。轉換梁的截面尺寸一般由剪壓比(mv=Vmax/febh0)計算確定,應具有合適的配箍率,以防發生脆性破壞,其截面高度在抗震和非抗震設計時應分別小于計算跨度的16和18。(2)厚板轉換層 當轉換層上、下柱網軸線錯開較多而難以用梁直接承托時,可采用厚板轉換層,但厚板的巨大荷載會集中作用于建筑物中部,振動性能復雜,且該層剛度很大、下層剛度相對較小,容易產生底部變形集中,其傳力途徑十分復雜,是一種對抗震十分不利的復雜結構體系,應進行整體內力分析、動力時程分析及板的內力分析等。厚板的厚度可由抗彎、抗剪、抗沖切計算確定;可局部做成薄板,厚薄交界處可加腋或局部做成夾心板,一般厚度可取2.0~2.8m,約為柱距的1/3~1/5。厚板應沿其主應力方向設置暗梁,一般可在下部柱墻連線處設置。轉換層厚板上、下一層的樓板應適當加強,樓板厚度不宜小于150mm。

(3)箱式轉換層

當需要從上層向更大跨度的下層進行轉換時,若采用梁式或板式轉換層已不能解決問題,這種情況下,可以采用箱式轉換層。

它很像箱形基礎,也可看成是由上、下層較厚的樓板與單向托梁、雙向托梁共同組成,具有很大的整體空間剛度,能夠勝任較大跨度、較大空間、較大荷載的轉換。

(4)桁架式轉換層

這種形式的轉換層受力合理明確,構造簡單,自重較輕,材料節省,能適應較大跨度的轉換,雖比箱式轉換層的整體空間剛度相對較小,但比箱式轉換層少占空間。

(5)空腹桁架式轉換層

這種形式的轉換層與桁架式轉換層的優點相似,但空腹桁架式轉換層的桿系都是水平、垂直的,而桁架式轉換層則具有斜撐竿。空腹桁架式轉換層在室內空間上比桁架式轉換層好,比箱式轉換層更好。

四.結束語

高層建筑的迅速發展,從以往的簡單體型和功能單一的時代開始走向體型復雜,建筑的功能呈現多樣化發展。在高層結構設計中,帶轉換層結構設計不能簡單設置成“承上啟下”,而要在實際結構上實現上部結構和下部結構的過度和轉換。

參考文獻:

[1] 熊進剛 李艷 帶結構轉換層的高層建筑結構設計[期刊論文] 《南昌大學學報(工科版)》 ISTIC -2002年4期

[2]季靜 韓小雷 楊坤 鄭宜 Ji Jing Han XiaoLei Yang Kun Zheng Yi帶主次梁轉換層的超限高層建筑結構設計[期刊論文] 《結構工程師》 ISTIC -2005年2期

[3]丁奇峰 帶結構轉換層的高層建筑結構設計 [期刊論文] 《城市建設理論研究(電子版)》 -2013年6期

[4]韓小雷 楊坤 鄭宜 季靜 帶梁式轉換層的超限高層建筑結構設計[期刊論文] 《昆明理工大學學報(理工版)》 ISTIC PKU -2004年6期

[5]黃瑛 帶轉換層高層結構綜合樓設計 [期刊論文] 《鐵道標準設計》 ISTIC PKU -2005年1期

篇10

一、前言

伴隨著我國建筑行業的迅速發展,工程建筑行業日漸成為了我國國民經濟新的經濟增長點,不僅僅在國民經濟的增長中占據著越來越重要的地位,而且在改善居民生活方式,提高居民的生活質量方面有著巨大的推動作用。隨著鋼筋混凝土建筑結構在建筑行業中的廣泛應用,建筑結構的設計和施工都有了新的標準和要求,在鋼筋混凝土結構的設計施工中,不僅僅要使得結構的平面,立面布置符合相關規則,更要使得建筑結構的各種構件的強度和變形能夠達到相關的標準,同時,要在滿足建筑設計基本目標的基礎上,更加重視建筑結構的抗震設計,提高建筑結構的抗震能力,保證整個建筑結構的質量。

二、鋼筋混凝土建筑結構設計的優化措施

1.做好結構體系的選型設計與優化

由于大開間剪力墻結構體系,可以做到房間不露出梁柱,有效空間大、隔音效果較好,當采用鋼制模板時,墻面和樓板表面平整并且不需要在濕作業的情況下抹灰。另外該結構體系不但用鋼量少,施工周期短、造價低,還具有整體性強、側向剛度大等優點,有利于抗風抗震,所以自九十年代起建筑結構體系基本上都采用大開間現澆鋼筋混凝土剪力墻結構。隨著經濟的發展,為了進一步降低建筑造價,近幾年來部分地區越來越多地采用短肢剪力墻與簡體或一般剪力墻組成的結構體系。這個結構體系也屬于剪力墻結構的一種。它的特點是建筑平面布置更具靈活性,并且又能節省鋼筋和混凝土用量,減輕建筑的總重量,從而降低地基基礎造價。

2.加強混凝土建筑結構的施工設計

為滿足結構承載力的需求,通常在結構設計中柱與梁板選擇不同強度等級的混凝土。施工規范規定柱的施工縫宜留設在梁底標高以下20mm-30mm處,其原則是施工縫宜留在結構受力小且便于施工的位置。施工時,為方便柱身混凝土的下料與振搗,在梁內鋼筋未綁扎之前進行澆注。按施工規范的要求,當梁柱的混凝土強度等級不同時,節點處應按。弱梁強柱”的原則。在實際施工中,施工班組制定合理的節點保證措施,監理人員加強對澆注質量的監管和提高整體結構的抗震性能十分重要。

3.建筑結構的基礎設計方面

在建筑的基礎設計中,要綜合考慮建筑場地的地質情況以及水位、使用功能、上部結構類型、施工條件和相鄰建筑的相互影響,以保證建筑物不會過量沉降或傾斜,而且還能滿足正常使用要求。另外還要注意相鄰地下建筑物及各類地下設施的位置,以保證施工的安全。

4.建筑結構設計的抗震方面

(一)房建結構設計要從建筑的全局出發

全面考慮各種建筑部位的功能,在此基礎上,科學設計每個部分的構件,保證每個部件之間的契合,促使每個部件或者是若干部件組合起來可以完成某一特定的設計要求,滿足一定的現實需求,同時,通過抗震設計,使得每個構件都可以具有相應的承載力,當地震來襲,每個構件都可以有著一定的次序先后破壞,整體組合構件將會有著更強大的承載力和柔性,從而延緩地震破壞的速度,消耗爆發的能量。增強建筑的整體抗震能力。

(二)要嚴格選擇地基選址

地基選址是進行建筑結構設計的基礎,因此,在房間結構抗震設計中,要科學避開山嘴,山包,陡坡,河流等不利因素,要本著堅硬,牢固,平坦,開闊的選址原則。親身實地,利用先進技術設備,進行地質勘探,山石水土監測,并取樣論證,科學嚴謹分析。力求使得整個地基牢固可靠,地質穩定無滲漏,無坍塌,無暗河,無熔巖,無火山……從而保證整個地基不會因為承載而發生小范圍的坍塌。影響到整體承載能力和抗震能力設計。

(三)采用合理的建筑平立面

建筑物的動力性能基本上取決于其建筑布局和結構布置。建筑布局簡單合理,結構布置符合抗震原則,通過無數次的實驗表明,簡單、規則、對稱的建筑結構抗震能力強,對延緩地震烈度范圍延伸,消耗地震的能量,減少地震對整體結構的破壞,而且,對稱結構容易準確計算其地震反應。

5. 加強對連梁的設計優化

(一)對連梁的剛度進行折減

連梁由于跨高比較小與之相連的墻肢剛度大等原因,在水平力作用下的內力往往很大,在連梁遇到外力發生屈服的過程中,主要有幾個表現,比如出現裂縫,連梁的剛度減弱,內力發生重新分布,因此,一般而言,在進行建筑結構設計之前,要對連梁的剛度實施折減,從高規中的相關條款解釋而言,是要對整個混凝土建筑結構的各個環節的剛度和彈性進行比較科學合理的分析,但是,在具體實際的操作過程中,各個部分的構件都需要承擔比較大的彎矩和剪力,并且配筋設計具有很大的難度,因而,在筆者多年的建筑結構設計過程中,可以減少對豎向荷載能力的考慮,而更多的進行適當的開裂設計,將內力轉移到墻體上去,如此,可以更好的實現建筑結構設計的優化。

(二)在設計過程中適當的減少連梁的高度

在進行連梁的設計中,為了達到降低連梁剛度,減少地震影響效果的目的,可以在保證整個建筑功能的基礎上,讓連梁的總體的跨度不斷增加,如此,可以很大程度的讓連梁的整體高度降低,一定程度而言,也使得可以講整個連梁的整體承載能力控制在一定的范圍之內,既可以讓設計得到優化,又可以讓建筑的功能得到正常發揮。

(三)在連梁設計過程中適當增加厚度

在進行連梁設計,在做好各種構件的設計優化的基礎上,可以讓連梁的整體截面的寬度進一步擴大,如此,不僅僅可以讓建筑結構整體的剛度變大,也能夠讓整個地震過程中產生的各種內力作用相對而言變得更大。而且,由于連梁的抗剪承載力與連梁寬度的增加成正比。通過剪力墻的厚度增加,也有可能達到讓連梁抗剪承載力符合限度的目的。

(四)提高混凝土等級

為了讓連梁的抗剪承載能力不會超過規定個標準,可以合理的提高剪力墻的混泥土的等級,當混泥土的等級得到提升,混泥土的彈性模量增加比例會小于抗剪承載力的提升比例,從而,可以達到控制目標。

三.、結束語

混凝土建筑結構設計是一項專業性極強的工作,必須綜合考慮到多種因素,既要滿足居民的生活生產多種需要,更要從地震防護,防水防滲漏等各種因素對建筑結構做出性能設計,同時,從城市整體的人文自然,交通政治等各方面的因素出發,選擇合理的建筑結構體系,做出科學嚴謹的設計,實現實用價值和美學價值的統一,為整個建筑業的發展和居民生活質量的提高,奠定基礎。

參考文獻:

[1]劉利峰 鋼筋混凝土建筑結構設計優化研究 [期刊論文] 《科技資訊》 -2010年20期

[2]張紅標 建筑結構設計成本優化研究--以深圳高層鋼筋混凝土建筑結構為例 [學位論文] 2011 - 浙江大學:企業管理

篇11

一.前言

由于經濟發展速度加快,社會需求不斷增多,使得建筑的高度不斷加高,形態愈加復雜,建筑結構中抗震設計也趨于多樣化。我國作為一個多震國家,結構設計中應注重抗震設計,良好的抗震設計和抗震措施至關重要??拐鹪O計中,要進行地基基礎的抗震設計??拐饦嬙齑胧┦墙Y構設計的重要內容。針對房屋建筑結構中的抗震設計要求,進行結構抗震設計和抗震措施,在結構設計與建筑施工中,應熟悉各種結構設計的抗震構造措施。

二.建筑結構抗震設計的基本要求

地震作用越大,房屋抗震要求越高。不同設防烈度和場地上,結構的實際抗震能力會有差別,結構可能進入彈塑性狀態的程度不同。震害表明,未經抗震設計的鋼筋混凝土結構,在7度區只有個別構件破壞,8度、9度破壞增多,因此,對不同設防烈度和場地可以有明顯差別。結構的抗震能力主要取決于主要抗側力構件的性能,主、次要抗側力構件的要求可以有區別。如框架結構中的框架與框架――抗震墻結構中的框架應有所不同。房屋越高,地震反應越大,其抗震要求越高。綜合考慮地震作用,結構類型和房屋高度等因素劃分抗震等級進行抗震設計,可以對同一設防烈度的不同高度的房屋采用不同抗震等級設計;對同一建筑物中結構部分采用不同抗震等級。

三.影響建筑抗震的因素分析

1.建筑抗震取決于所選取建筑結構形式

為實現“小震不壞、中震可修、大震不倒”的抗震目標,新版《建筑抗震設計規范》中取消了磚混內框架結構,提高了磚混結構建筑的設計要求。目前普遍使用的框架-剪力墻結構、剪力墻結構、框架結構三種結構形式中,框架-剪力墻結構的抗震性能最為突出,剪力墻次之。單純的框架結構造價雖然抗震性能不如前兩種,但其造價較低,施工技術成熟,是目前最為常見的結構形式。根據建筑當地的實際情況,結合建筑的使用功能,選取合適的結構形式,對于建筑抗震意義重大。

2.建筑抗震取決于適宜的抗震措施

在場地類型不同的情況下,抗震措施主要由建筑的不同等級決定。在確定建筑等級及場地類型之后,將先進的抗震理念和系統的分析計算納入到抗震措施設計中,即可改善建筑抗震設計,提高建筑抗震效果。

3.影響房屋建筑抗震性能的因素

房屋建筑抗震性能取決于場地選擇、施工質量等其他因素。建筑工程場地選擇不當等造成施工質量下降,這些因素都可能對建筑結構的抗震性能造成重要影響。選擇建好的工程場地、加強施工質量監督,對于提高建筑抗震性能是十分必要的。

四.建筑抗震設計具體分析

抗震設計的重要基本要求就是要確保房屋基礎構造的延性設計要求得以保證,能夠在建筑結構延性問題上設立多道防線,以此才能避免建筑結構脆性過大造成的構造強度失衡、失控的現象發生,從而影響其抗震性能及成果。因此,這就需要做好以下幾點把握。

1.周全考慮房屋建筑選址問題在房屋工程項目立項之初,就要周全考慮好能夠發揮抗震成果的選址問題,如健全周到考慮好土體結構、地質、地貌等問題,并要預測分析地震活動發生時建筑構造的承受能力,且要記錄相關技術資料檔案中,待實地考證時能夠綜合評價。此外,還要避開影響建筑構造抗震效果發揮的不利區域、地段等,當避無可避時應當立足實際采取合理控制措施

2.加強建筑構造規劃研究

由于地震發生時建筑結構本身會發生應力過于集中、突破塑性變形彈性極限等的可能,進而形成結構抗震薄弱部分。因此,建筑構造設計應能保證建筑結構延性、安全度、以及選取合適的建筑平面、剖面進行設計,既要保證建筑結構強度穩定,又能避免建筑脆性過大而延性過小的負面現象發生。

3.保證地基與基礎設計要求當房屋項目工程的地基土體為粘性土、軟土、液化土、以及不均勻沉降土時,應當評估好地基的基礎沉降是否在預控范疇之內,是否發生嚴重不規則沉降現象,從而才能有針對性的采取防控措施。

4.滿足建筑構造體系設計要求

抗震性能價值體現是建筑構造體系設計中的重要組成部分。因此在構造設計上就要綜合分析、周全考慮、能夠統籌把握好各項綜合因素。如考慮好抗震防御等級、抗震強度控制指標、項目建設場地、以及基礎地基處理、供應材料的質量體系要求、現有技術規模等問題。

5.確保建筑構造的構件要求

(一)房屋建筑工程的結構基礎構件設計應當滿足相關規程標準、要求,如混凝土的圈梁、構造柱、芯柱、或者配筋砌體等的質量建設體系要求就必須能夠保證。

(二)要保證混凝土結構合理設計,在建筑的具體結構構件應能具備尺寸合理、縱向承重鋼筋及箍筋的強度達到設計標準,目的是控制剪切破壞先于彎曲破壞發生的可能,以及防止鋼筋屈服而引起的構件塑性變形遭受破壞發生。

(三)鋼結構建筑施工時能夠保證其構件尺寸、規格、數量合理,進而才能避免整體構造抗震成果發揮不利、結構失穩的現象發生。最后,還要周全考慮好建筑構造構件之間的鏈接、銜接性的體現,控制好構件節點的穩定性,保證其在地震發生時的塑性破壞能夠晚于其他結構構件,進而才能增強建筑結構的整體穩定性與安全度。

五.建筑結構設計抗震關鍵措施和設計方法

1.建筑結構抗震措施要點

(一)房屋建筑結構設計要從建筑的全局出發,全面考慮各種建筑部位的功能,在此基礎上,科學設計每個部分的構件,保證每個部件之間的契合,促使每個部件或者是若干部件組合起來可以完成某一特定的設計要求,滿足一定的現實需求,同時,通過抗震設計,使得每個構件都可以具有相應的承載力,當地震來襲,每個構件都可以有著一定的次序先后破會,整體組合構件將會有著更強大的承載力和柔性,從而延緩地震破壞的速度,消耗爆發的能量。增強建筑的整體抗震能力。

(二)要嚴格選擇地基選址,地基選址是進行建筑結構設計的基礎,因此,在建筑結構抗震設計中,要科學避開山嘴,山包,陡坡,河流等不利因素,要本著堅硬,牢固,平坦,開闊的選址原則。親身實地,利用先進技術設備,進行地質勘探,山石水土監測,并取樣論證,科學嚴謹分析。力求使得整個地基牢固可靠,地質穩定無滲漏,無坍塌,無暗河,無熔巖,無火山……從而保證整個地基不會因為承載而發生小范圍的坍塌。影響到整體承載能力和抗震能力設計。

(三)采用合理的建筑平立面。建筑物的動力性能基本上取決于其建筑布局和結構布置。建筑布局簡單合理,結構布置符合抗震原則,通過無數次的實驗表明,簡單、規則、對稱的建筑結構抗震能力強,對延緩地震烈度范圍延伸,消耗地震的能量,減少地震對整體結構的破壞,而且,對稱結構容易準確計算其地震反應。

(四)選擇合理的結構形式。抗震結構體系是抗震設計應考慮的關鍵問題。建筑結構抗震設計中,不同結構的抗震結構體系的承載力受到抗震設防烈度、建筑高度、場地條件以及建筑材料、施工條件、經濟條件等多種條件的影響,因此房建結構抗震設計要綜合考慮,做到科學選擇,嚴謹設計。

(五)結構良好的延性有助于減小地震作用,吸收與耗散地震能量,避免結構倒塌。因此,結構設計應力求避免構件的剪切破壞,爭取更多的構件實現彎曲破壞。

六.結束語

因為涉及到人類生命財產安全的重要問題,建筑物的抗震問題是目前建筑結構設計界討論比較多的話題之一。因此,我們在對建筑物進行結構設計的時候,必須把房屋建筑結構中的抗震設計要求放到非常重要的位置,并采取適當的措施,盡量避免地震對建筑物的損壞,為保障人民的生命及財產作出應有貢獻。

參考文獻:

[1]戴國瑩.建筑結構基于性能要求的抗震措施初探[J].建筑結構,2011,(08)

[2]吳智,李貴男,段壯志.民房建筑結構抗震能力分析與抗震措施探討[J].山西建筑,2012(10).

[3]高利學.淺談高層建筑的抗震設計與抗震結構[J].中國新技術新產品,2012,(03)

篇12

引言

隨著建筑高層化的發展,對剪力墻性能及施工質量提出了更高要求。對于從事高層結構設計的工程師來說,只有對框架結構剪力墻結構的優缺點和技術要點全面把握,并能夠吸收當代高層建筑結構設計的一些成功經驗,并把結構的經濟性、合理性與結構抗震的安全性等諸多因素加以統籌考慮,才能很好的與建筑師配合并設計出經濟合理的高層建筑結構體系。

一、框架、剪力墻的受力特點

1 框架結構的受力特點

柱子是承重的關鍵,柱子上方架著橫梁,橫梁上面鋪設樓板。框架結構的建筑物往往有粗大的柱子,這樣才能夠能夠保證柱子有足夠的強度支撐建筑物的重量??蚣芙Y構的這一受力特點導致采用框架結構的建筑物對橫向受力的抵抗力不足,尤其是如果遇到地震,樓層間甚至可能出現移動。

2 剪力墻結構的受力特點

剪力墻結構是利用鋼筋混凝土結構的墻體作為主要承重結構,比如建筑外墻,這些墻體有著抗震,抗側剛度大,結構的整體性好的特點。尤其是現澆的鋼筋混凝土,負載高,水平荷載大,抵抗水平力的作用明顯。

3 框架一剪力墻結構的受力特點

框架一剪力墻結構是由梁柱搭建框架,再在部分框架間布置剪力墻,框架間填充加氣混凝土輕型墻體,讓剪力墻和框架一起承重,增加建筑物的承重能力。利用框架結構的靈活多變的特點劃分建筑空間,利用水平荷載能力強的剪力墻抵抗水平方向的受力??蚣芤患袅Y構把框架和剪力墻的優點結合在一起,相互彌補了對方的弱點。

二、設計計算中的幾個問題

1 剪力墻的布置

原則上,布置剪力墻應該盡量保證對稱、均勻、分散。剪力墻應該沿著房屋的方向,縱橫布置,以外墻、電梯、樓梯、拐角劑周邊等處為宜。在分布上盡量滿足對稱原則,這樣的分布可以盡量使建筑物的剛度中心和質量中心接近。增加抵抗扭轉的內力臂,最大化的加強建筑物的整體強度,提高抗扭轉能力。在縱向方向布置的剪力墻應該從地基一直到房頂,保證墻體剛度。每片剪力墻的尺寸不要太長,最好不超過8m,盡量分散成多片,增加一片剪力墻就等于增加了一個抵抗水平力的結構。尤其是具有一定轉折的剪力墻擁有更加優秀的抗側力效果,比如L形、十字、圓形等形狀。

2 剪力墻的厚度

框架一剪力墻結構中,對于帶有邊框的剪力墻厚度有一定的規范。如果該建筑處于震區,或者要考慮到抗震設計,那么剪力墻的高度大于等于建筑物層高的1/16,底部的剪力墻加強部位厚度應該大于等于200mm,無論是第一級還是第二級剪力墻都應該滿足這個規范。如果不考慮抗震設計,那么剪力墻的高度應該大于等于建筑物層高的1/20,且厚度大于等于160mm。而邊框的梁最合適的寬度就等于剪力墻的厚度,邊框梁的高以剪力墻的2倍為宜。

3 重視屋面小塔樓的不利影響

現在的高層建筑物,在屋頂處常會設計小塔樓、電梯間、等突出屋頂的建筑結構。由于塔樓結構的質量和剛度比建筑物主體小很多,一旦發生地震,在鞭梢效應的影響下,小塔樓會產生水平位移。就算建筑物主體并未受到損壞,塔樓也可能會因為鞭梢效應的作用遭到破會。目前,大部分高層建筑物在設計的時候都將塔樓和建筑物主體分離設計,在抗震設計的時候也是分別進行計算。計算高層建筑物頂部小塔樓的地震作用非常重要,現在主流的計算方法是底部剪力法,計算頂部塔樓受到的地震作用需要考慮增大系數。由于底部剪力法計算比較復雜,為了簡化計算方法,我們可以將小塔樓看做一個單獨的結構,在地面計算小塔樓受到的地震作用,將得到的結果乘以增大系數就可以得到小塔樓在屋頂受到的地震作用了。由于設計建筑主體的時候一般都忽略塔樓對建筑主體的地震作用,僅僅計算和塔樓連接的部位。這樣的算法還是存在缺陷,如果遇上強震,塔樓在鞭梢效應的影響下,必定會對建筑物主體產生不良作用。

4 框架剪力墻結構的抗震設計

在設計框架剪力墻結構的抗震性能時,必須符合相關規程。在水平力作用下,框架剪力墻結構底層的框架部分所承受的地震傾覆力矩與結構總地震傾覆力矩有一個比值(以下簡稱力矩比值),根據這個比值的不同,要采取不同的設計:當力矩比值小于lO%時,按剪力墻結構進行設計,其中的框架部分應按框架一剪力墻結構的框架進行設計。當力矩比值大于10%時,按框架一剪力墻結構設計,力矩比值在5O%至80%之間的,可以適當的增加框架剪力墻的最大高度。框架和剪力墻的部分應該按照各自的標準設計抗震等級及軸壓比。當力矩比值大于80%時,框架剪力墻的最大高度必須按照框架結構設計,在抗震等級及軸壓比的設計上也和前一種情況有所不同,框架部分按照框架結構設計,剪力墻按照框架剪力墻結構進行設計。

三、高層框剪結構抗震設計的技術要點

1 提高剪力墻的抗震能力

(1)提高剪力墻的抗震能力需要加強對傾斜方向裂縫的控制,我們可以利用邊框剪力墻來實現這一目的。將梁柱設計在剪力墻的邊上,增加擁有傾斜方向承載力的邊框結構,這些邊框能夠阻攔傾斜的裂縫。如果剪力墻產生裂縫,邊框結構可以減低附加剪應力,阻止裂縫衍伸到其他部位。

(2)合理的肢墻面積。

如果剪力墻縱向設計有洞口,那么這片剪力墻就變成了聯肢墻,聯肢墻的中間受到橫梁的約束。聯肢墻有雙肢墻和多肢墻兩種情況,雙肢墻上只有一列洞口,多肢墻上有多列洞口。

這樣的設計降低了剪力墻的剛度,增強抗震能力。即使出現裂縫也往往是在洞口或橫梁部位,降低了對墻體的傷害。

2 改善框架的抗震能力

(1)強化角柱。要增強抗震能力就應該強化框架的角柱,提高抗剪應能力。作為框架結構的關鍵部分,角柱起到連接梁和柱子的作用只有強化了角柱才能從整體加強框架結構。

(2)增強框架的抗震能力需要提高整體框架對推力的抗性,降低橫向的位移,尤其要注意減少樓層之間的移動??梢栽诳蚣軆确稚⒉贾糜娩摻罨炷翝仓募袅?。由于這樣的設計沒有良好的延展性,我們可以設計一些有延展性的墻體,降低剛度。比如在剪力墻的墻體上合理的增加開口,形成耗能結構,有效的將震能釋放。

(3)在框架剪力墻結構中,設計贅余構件可以有效的抵消地震部分的能量。設計贅余構件時可以使用鋼筋做骨架的混凝土作為支撐構件,發生地震時,震能會首先影響這些構件,當這些構件被破壞之后,建筑物的整體結構也會發生一定的改變,同時改變了自振頻率,避免和形成共振。

3 改善整體抗震能力

( 1)如果在框架剪力墻結構中的梁端和柱端安裝“塑性鉸”,可以在框架剪力墻結構中形成耗能結構。由于塑性鉸能夠承受、傳遞一定的彎矩,地震發生時,即使縱向鋼筋發生屈服也不會瞬間破壞結構,而是在塑性鉸的作用下承載。水平的構件會先于縱向構件發生屈服,

避免建筑物發生垮塌。

( 2)依照建筑物的實際情況,在框架剪力墻整體結構的剛度和承載能力之間尋求平衡。由于地震發生時,建筑物會的自振周期容易和地震產生共振,如果使用了過多的剪力墻就會減小自振周期,增加建筑物的剛度。那么,加大自振周期就可以有效減少地震作用。在設計的時候布置數量合理的剪力墻,適當的使用短肢墻來減少剪力墻的面積,既可以減輕建筑物的整體重量,有能夠有效的防御地震的影響。

( 3)由于框架和剪力墻的材料,制造工藝不相同,兩者的結構也不一樣,他們存在著剛度、彈性和延展性等多種差異。有可能導致框架剪力墻結構的構件之前無法有效的合作,構件之前缺乏協調,降低了建筑物的抗震能力。只有在考慮協調性的基礎上,經過嚴密的計算和設計,在結構的剛度、彈性和延展性之間做好平衡才能夠最大程度抵抗地震力。

四.結語

盡管在高層建筑中框架剪力墻已經得到廣泛的應用,并且也取得了前所未有的高度和成就,但是該結構復雜的受力特性使得在抗震性能上還有很大的改進空間。在進行轉換層的設計構造時,嚴格遵循本文提到的結構設計要求,特別是抗震概念要求,在轉換層附近適當提高其構造等級要求,增強整體抗震能力,使得框架剪力墻結構更好地應用到高層建筑中。

【參考文獻】

[1] 文偉 剪力墻結構在建筑結構設計中的應用分析 [期刊論文] 《城市建設》 -2010年35期

篇13

Key words: high-rise building; torsion resistance design

中圖分類號:TU7文獻標識碼:A 文章編號:2095-2104(2012)

扭轉效應是建筑遭受震害的重要因素之一,建筑設計工作者在對高層建筑進行結構設計時,一定要充分重視建筑結構的扭轉問題,熟悉結構扭轉產生的原因,了解結構扭轉的性質,并掌握扭轉的理論和計算方法。最關鍵的還是要充分考慮各方面的影響因素,做好計算和校核工作,根據建筑的具體特點,針對薄弱點,做好建筑結構的抗扭設計措施,使高層建筑能經得起地震的考驗,保障人民的生命財產安全。

1 高層建筑結構扭轉的性質

高層建筑結構在地震荷載作用發生扭轉破壞時,會加大建筑抗推剛度較弱的一側的位移,并使其剪力增加,破壞程度加重。如果平面的剛度不均勻,一端剛度很大,另一端只有剛度很小的柱子,地震荷載作用下發生扭轉,導致沒有剪力墻的一端柱子塌落而使樓板也跟著塌下。若每個結構單元兩端之問的質量和剛度相差懸殊,也會在地震作用下產生扭轉,造成鋼筋混凝土柱出現交叉裂縫。如果建筑的每層平面布置不盡相同,有些柱子上、下錯位或形狀和長邊方向改變,這樣可能造成地震時底層柱折斷而導致上層整體塌落。當結構平面形狀不規則時,產生破壞時交叉斜裂縫的寬度可達100mm。對單一受扭構件的破壞的研究表明,少筋及超筋構件以脆性形式破壞,而且破壞是突發性的,沒有明顯塑性變形,而適筋受扭構件以延性形式破壞,破壞具有明顯的塑性變形過程。但對于整體結構發生扭轉破壞來講,破壞是具有突發性的,塑性變形量較小,屬脆性破壞范疇。

2 引起結構扭轉的因素

2.1 建筑結構扭轉振動原因

2.1.1 外來干擾

地震時地面質量間具有運動的差別性,使地面不僅產生平動分量,同時也產生轉動分量,正是后者迫使結構產生了扭轉。但由于地震觀測的工作條件復雜,使得扭轉分量的相關理論和計算方法還不成熟,一些實際技術工作也沒能得到解決,所以目前的抗震規范都沒有考慮地震扭轉分量的計算。但我國規范中考慮了其影響:當不對規則結構進行扭轉耦聯計算時,應將平行于地震作用方向的兩個邊榀的地震作用效應乘以一個適當的增大系數,通常短邊可取1.15,長邊可取1.05,若扭轉剛度較小,則增大系數不宜小于1.3。

2.1.2 建筑結構本身因素

當建筑結構的剛度中心沒有與質量中心重合時,會導致地震作用下結構的扭轉振動。就算各層的剛心與質心重合,但建筑整體的質心不在同一軸線上,也會受到地面運動的扭轉分量、活荷載的偏心及其他復雜因素的影響,也會引起結構的扭轉振動。造成扭轉破壞的一個重要原因是平面剛度是否均勻,而剪力墻的布置是影響剛度是否均勻的主要因素。

2.2 建筑結構的平面和立面布置

2.2.1 平面布置

地震區的高層建筑,最好采用圓形、方形或矩形平面,橢圓形、扇形、正六邊形、正八邊形也可以采用。雖然三角形平面看起來也比較簡單和對稱,但它并非沿主軸方向都對稱,地震時也易產生較強的扭轉振動,所以地震區高層建筑的現狀盡量避免采用三角形。此外,帶有較長翼緣的L形、U形、H形、T形、十字形、Y形平面也不宜采用,因為此類平面在地震時容易發生差異側移而使震害加重。

2.2.2 立面布置

地震區高層建筑的立面也盡量采用矩形和梯形等均勻的幾何形狀,不宜采用帶有突然變化的立面形狀,因為形狀突變會引起質量和剛度的劇烈變化,致使該突變部位在地震時因塑性變形集中效應而加重破壞。在地震區尤其不宜出現倒梯形建筑和大底盤建筑,但這兩種建筑形式是比較流行的。倒梯形建筑雖然建筑風格比較時尚,但其在質量、剛度和強度分布上均不符合抗震設計原則,它的上部質量大而下部質量小,使得重心偏高,增加了傾覆力矩;上部剛度大而下部剛度小,相對增大了底層的薄弱程度。許多大底盤高層建筑,在低層裙房與高層主樓相連處容易引起剛度突變,使主樓底部樓層變成相對柔弱的樓層,容易在地震中因塑性變形集中效應而導致嚴重破壞。

3 高層建筑結構扭轉設計控制方法及措施

引發高層建筑結構的扭轉振動的因素眾多,包括地面的運動、建筑物質量和剛度分布的不均勻、計算分析的誤差以及抗扭構件的脆性破壞等,這些使得扭轉振動在所難免。在設計中應盡量改善結構扭轉效應,并在構造上采取一定措施來減小扭轉。

3.1 改善扭轉效應

總的來說,就是要做到削弱中間、加強周邊。具體可從以下幾個方面來改善扭轉效應:

3.1.1 建筑平面總體布置應規則、對稱,具有良好的整體性。

3.1.2 建筑的立面形狀應規則,豎向抗側力構件的材料強度和形狀尺寸從上到下應逐漸增加,避免其剛度和承載力突變。

3.1.3 增加遠離質心處的剪力墻厚度,盡量使剛心接近質心,減小偏心率。

3.1.4 若簡體剛度很大,則可加開結構洞以減小剛度偏心。

3.1.5 平面凹凸不規則處應加拉梁或增設拉接樓板。

3.1.6 盡量加大周邊構件截面,以增加整個平面的抗扭剛度。

3.2 抗扭措施

3.2.1 根據建筑具體高度來選擇適宜的結構類型。

3.2.2 確保框架一剪力墻基礎具有良好的整體性和剛度。

3.2.3 框架結構和框架一剪力墻結構中,梁中線與柱中線、柱中線與剪力墻中線之間的偏心距不宜過大,并且框架和剪力墻均應雙向設置。

3.2.4 剪力墻的設置宜貫通房屋全高,其橫向與縱向墻體應相連;較長房屋中的縱向剪力墻不宜設置在端開間,應設置在墻面不需開大洞口的位置,剪力墻上的洞口宜上下對齊。

3.2.5 調整后的框架的角柱的剪力設計值和組合彎矩設計值還應乘以一個增大系數,并且其值不小于1.1。

3.2.6 剪力墻的底部加強部位及以上一層的截面組合的彎矩設計值,應采用墻肢底部截面組合彎矩設計值,而其余部位設計值應乘以增大系數1.2。

3.2.7 各級剪力墻底部加強部位的截面剪力墻設計值均應乘以相應的增大系數,一、二、三級的增大系數分別為1.6、1.4、1.2。

3.2.8 控制好建筑的高寬比,不應使這一值過大,基礎埋深應達到一定的限值。

3.2.9 適當增大邊柱、角柱及剪力墻端柱的縱向鋼筋面積。

4 結語

高層建筑結構破壞大多是由扭轉所導致的,因此加強結構的抗扭剛度和抗扭能力是減小建筑結構震害程度的重要措施,也是結構設計的一個重要概念。扭轉效應大多是由建筑布置不合理而產生的,因此抗震設計中首先要考慮合理的建筑布置,抗震結構應盡量滿足平、立面簡單對稱的原則,盡量減少凸出和凹進等復雜平面,還應盡可能使平面剛度均勻。

參考文獻:

[1] JGJ 3-2010,高層建筑混凝土結構技術規程[S].