日本免费精品视频,男人的天堂在线免费视频,成人久久久精品乱码一区二区三区,高清成人爽a毛片免费网站

在線客服

數字電子技術論文實用13篇

引論:我們為您整理了13篇數字電子技術論文范文,供您借鑒以豐富您的創作。它們是您寫作時的寶貴資源,期望它們能夠激發您的創作靈感,讓您的文章更具深度。

數字電子技術論文

篇1

2.1轉變教學理念

數字電子技術的傳統教學中,采用的是“教-學-練”的教學模式。而現如今,信息大爆炸和獨生子女教育的負面問題,使得學生的自我約束能力降低,學習主觀能動性降低,傳統教學模式不再合適,轉變教學模式勢在必行。ISEC項目中,教學模式為“引導-問答-探究-發現”。教師不再是教學活動中的主體和靈魂,而是要形成以學生為中心,教師為主導的教育理念,真正成為高等教育中的“導師”而是“教書匠”。引導不僅僅是對教學內容的引導,還有對學生的能力訓練的引導,精神追求的引導。因此,任課教師首先要對本門課程的歷史沿革、理論體系和前沿發展具有深入的了解,在教學中能夠為學生傳授更加貼近實際,更加符合專業培養目標的理論知識。課堂教學模式需要從單一向學生傳授教科書上的現成知識,轉為以提高學生的能力為主要目標的教學活動。學生不再只是被動的接受和記憶,而是要在主動思考和提出問題的過程中,將聽到的、看到的內容轉化為自己的。通過小組合作討論的形式,探究更深層的知識,既提高學習的興趣和效率,又能在討論中學會與他人合作、分享,而最終具有將理論知識應用到實際中的能力。

2.2互動式教學

受傳統文化的影響,我國的教師更喜歡站在講臺上講課,而國外的很多教師,更偏向于走到學生中間。課堂實踐證明,站在學生中間更容易引起學生的共鳴、認同和學習興趣。消除了空間上的距離感,同時也會減輕學生心目中的隔閡感,更容易對自己的老師產生認同感,而對任課教師的認同是影響學生學習的一個很大的因素。在課堂中,還可以采用其他很多種互動的方式。例如,

(1)可以將簡單的授課內容分配給學生來講。這類內容大多零散、連貫性差、偏重概念理論,如果由教師講,很容易使得學生在聽講中感覺枯燥乏味,而由他們自己來講解,就可以解決這一問題,同時又可以鍛煉學生的總結和語言表達能力。

(2)可以將人們喜聞樂見的娛樂節目中的競賽形式引入課堂中,將枯燥的知識點融入到競賽題目中去,同時制定合理的獎勵政策,這將大大提高學生的學習興趣和學習積極性,并能促進學生利用課余時間去學習,為課堂學習做準備,提高課堂學習效率。

2.3任務教學法

在任務教學法中,教師只是起到組織和協調的作用,真正是以學生為中心。教師需要選取合適的任務,既要包含基本的教學知識點,又能調動學生解決問題的積極性。例如在數字電子技術課程中,可以選擇數字電子鐘的設計作為一個任務,它既包含數字電子技術課程的主要內容,既有組合電路的部分,又包含時序電路的設計,同時又是生活中常見的實物,難度也在可控的范圍內。學生需要獨立地制定設計方案、選擇設計元件、評估設計成果。通過一個任務的完成,使學生在獲得基本知識的同時,又鍛煉了多方面的能力,一舉多得。

3過程性考核形式改革

課程的考核評價是教學過程的一個重要組成部分,當前考核方式的弊端已經制約了良好學風的形成和教學質量的提高,不利于學生創造性思維的培養,不利于調動學生學習的主動性和積極性,考試失去了它所具有的評估、反饋功能。過程性考核要求閉卷考試的成績不得超過總成績的40%,增加例如小論文、研究報告、市場調研、案例分析、答辯、口述、面試等其他多種考試形式。同時,學生的出勤和課堂參與情況也是一個考核的方面。采用多元化、過程性的考核方式,既可以避免學生只在考試前一周突擊學習和抄襲的不良風氣,又能夠促進教學互動,同時還可以鍛煉學生應對多種挑戰的能力,對新世紀能力型人才的培養具有重要意義。

篇2

(二)雷達接收機上數字電子技術的應用

雷達是軍民兩用的,具備高要求和高標準的高精度電子設備,而日趨成熟完善的數字電子技術也在精密的雷達生產制造過程中起到其中的作用。作為雷達,其主要就是搜尋捕捉目標信號,因此其必須具備強烈的抗干擾性,也就是說雷達信號接收設備就必須具備靈敏性強、頻段高性能,而數字接收機就基于這一點順利成功取代了現代雷達中模擬接收器的地位。雷達接受機中數字接收機高指標的數字變頻濾波技術和I/Q解調技術充分使得雷達接收器的實用性和精確性得到提高,也充分展現出數字電子技術應用的優越性。有此可以看出數字電子技術突出的抗干擾、無噪聲、易交換儲存及處理、能夠將設備集成化、微型化的特性在網絡信息時代,也會在計算機信號和計算機數字聯網方面得到充分應用,從促使網絡通信管理實現智能化和自動化,這都需要數字電子技術和網絡信息技術的綜合支持和發展。

二、數字電子技術未來發展方向和趨勢

當前網絡信息技術加快了全球信息化時代的到來,社會市場發展需求直接推動了電子技術行業的發展進程,而其中數字電子技術更是成為信息時代技術行業市場的生力軍,不斷促使經濟行業產業的更新升級,還使得數字電子技術和信息技術向著更高層次平臺前進,可以說數字電子技術是隨著市場需求而不斷發展進步的,電子技術數字化和信息化已經成為電子技術領域發展主流,也是當前相關行業的普遍共識?,F在我國電子技術行業研究專家還在不斷努力研究開發,進行多角度、多層面的項目實驗和探索,使得我國電子技術數字化發展事業因為持續技術變革和電子產品的大步伐邁進,其發展速度之快更是空前,現在數字電子技術主要研究大規模可編程邏輯器件的應用實踐,尤其是模板半導體工藝已經達到了深亞微米階段,而集成芯片也實現了千兆位。除此之外,數字電子技術其他內容器件和系統也得到了前所未有的發展進步,如其系統數據傳輸可以達到每秒幾十億次,其時鐘頻率也向著千兆赫茲以上進步,這都使得未來集成電路技術SystemOhaCh5p片上系統化發展成為必然。在電子設計方面也面臨著基于電子設計自動化基礎上的5PGA技術的應用和實踐,這些技術的進步和突破必將為信息時代創造更多的奇跡。此外,電子技術領域數字電子技術也會逐步將模擬電子技術特點優勢加以引進融合,并開發研究新型的、性能更好的電子器件,從而提高數字電子技術機械零器件的使用效能和壽命,也會間接擴大提高其數字電子技術應用范圍和效能。例如傳統電位器不僅壽命短,其可靠性和噪聲污染也不盡人意,而數字電位器集成了電子開關、線性電阻技術以及EEROM強烈改善了傳統電位器機械結構,克服了其不利缺陷,有效提高了其性能需求。當前各類已經得到廣泛使用的融合數字、模擬電子技術的新型電子器件有D類音頻功率放大器、開關電壓調節器等等已經取得了較好的實用效果,而且當前網絡信息系統也會新型電子器件的研究開發提供了一定的助力,相信科學在發展,人類不斷在進步,數字電子技術領域也同樣如此,不論是其機械器件還是其系統技術都在大幅度前進突破從而更好的為社會經濟市場服務。

篇3

2.1轉變教學理念

在數字電子技術的傳統教學中,采用的是“教-學-練”的教學模式。而現如今,信息大爆炸和獨生子女教育的負面問題,使得學生的自我約束能力降低,學習主觀能動性降低,傳統教學模式不再合適,轉變教學模式勢在必行。ISEC項目中,教學模式為“引導-問答-探究-發現”。教師不再是教學活動中的主體和靈魂,而是要形成以學生為中心,教師為主導的教育理念,真正成為高等教育中的“導師”而是“教書匠”。引導不僅僅是對教學內容的引導,還有對學生的能力訓練的引導,精神追求的引導。因此,任課教師首先要對本門課程的歷史沿革、理論體系和前沿發展具有深入的了解,在教學中能夠為學生傳授更加貼近實際,更加符合專業培養目標的理論知識。課堂教學模式需要從單一向學生傳授教科書上的現成知識,轉為以提高學生的能力為主要目標的教學活動。學生不再只是被動的接受和記憶,而是要在主動思考和提出問題的過程中,將聽到的、看到的內容轉化為自己的。通過小組合作討論的形式,探究更深層的知識,既提高學習的興趣和效率,又能在討論中學會與他人合作、分享,而最終具有將理論知識應用到實際中的能力。

2.2互動式教學

受傳統文化的影響,我國的教師更喜歡站在講臺上講課,而國外的很多教師,更偏向于走到學生中間。課堂實踐證明,站在學生中間更容易引起學生的共鳴、認同和學習興趣。消除了空間上的距離感,同時也會減輕學生心目中的隔閡感,更容易對自己的老師產生認同感,而對任課教師的認同是影響學生學習的一個很大的因素。在課堂中,還可以采用其他很多種互動的方式。例如,(1)可以將簡單的授課內容分配給學生來講。這類內容大多零散、連貫性差、偏重概念理論,如果由教師講,很容易使得學生在聽講中感覺枯燥乏味,而由他們自己來講解,就可以解決這一問題,同時又可以鍛煉學生的總結和語言表達能力。(2)可以將人們喜聞樂見的娛樂節目中的競賽形式引入課堂中,將枯燥的知識點融入到競賽題目中去,同時制定合理的獎勵政策,這將大大提高學生的學習興趣和學習積極性,并能促進學生利用課余時間去學習,為課堂學習做準備,提高課堂學習效率。

2.3任務教學法

在數字電子技術課程中,可以選擇數字電子鐘的設計作為一個任務,它既包含數字電子技術課程的主要內容,既有組合電路的部分,又包含時序電路的設計,同時又是生活中常見的實物,難度也在可控的范圍內。學生需要獨立地制定設計方案、選擇設計元件、評估設計成果。通過一個任務的完成,使學生在獲得基本知識的同時,又鍛煉了多方面的能力,一舉多得。

3過程性考核形式改革

課程的考核評價是教學過程的一個重要組成部分,當前考核方式的弊端已經制約了良好學風的形成和教學質量的提高,不利于學生創造性思維的培養,不利于調動學生學習的主動性和積極性,考試失去了它所具有的評估、反饋功能。過程性考核要求閉卷考試的成績不得超過總成績的40%,增加例如小論文、研究報告、市場調研、案例分析、答辯、口述、面試等其他多種考試形式。同時,學生的出勤和課堂參與情況也是一個考核的方面。采用多元化、過程性的考核方式,既可以避免學生只在考試前一周突擊學習和抄襲的不良風氣,又能夠促進教學互動,同時還可以鍛煉學生應對多種挑戰的能力,對新世紀能力型人才的培養具有重要意義。

篇4

在項目教學實施的過程中,教師在做到整體掌握、全程引導的同時,還要尊重學生的設計,協助學生解決遇到的難題。如學生在校時電路的設計中遇到了如下問題:校時電路的開關在接通和斷開時均存在抖動問題,使電路無法正常工作。這時學生在教師的鼓勵、引導下查閱資料,了解到常用的消除抖動的方法:軟實現(編程實現)、硬件實現。軟實現即處理器查詢或者監視開關的狀態,當開關在規定時間內沒有改變狀態時,即認為開關已經不再抖動。常用的硬件去抖動的方法有:(1)使用施密特觸發器電路;(2)使用CMOS555定時器;(3)基本RS鎖存器電路。利用施密特觸發器電路消除抖動時,應確保施密特觸發器的門限電壓盡可能小,以保證能被電容上的電壓觸發;當開關存在很多抖動時,最好的方法是采用CMOS555定時器構建單穩態電路來消除抖動。當開關按下時,555定時器可以輸出一個穩定的脈沖信號,代替開關來觸發實際;利用基本RS鎖存器電路,將鎖存器的S端接開關輸入,R端接應用電路,將開關的狀態鎖存,當操作完成后取消鎖存。學生可以分組,應用不同的方法消除抖動,比較去抖動的效果,確定最佳方案。學生通過查閱資料,不僅解決了設計中遇到的問題,同時也發散了思維,擴展了知識面。

3.時序仿真,實現目標。

學生通過原理圖設計,得到了秒脈沖信號、二十四進制計數器、六十進制計數器,通過仿真可以得到其時序圖,引導學生總結利用集成計數器芯片實現其他進制計數器的方法,最后通過級聯實現數字鐘的設計和仿真。每個小組實現項目設計后,教師應對學生作品進行評價,項目組負責人應向全班匯報并展示本組設計的作品,列舉在項目實施過程中遇到的問題及解決方案。

4.拓展項目,鼓勵創新。

在學生實現了項目任務時,教師可以引導學生進行項目的拓展,增強學生的靈活應用能力和創新能力。鼓勵學生進行討論,如現在市場上的電子鐘定時有何特點,學生自身對定時功能有何要求等。學生可以通過提方案、互相補充、多方面對比等探討過程,實現電子鐘個性化定時的設計。在這一過程中,學生不僅學會思維探索,而且提高了對知識的理解記憶,為課程學習打下了堅實基礎。不要局限于一套設計方案。在系統設計前,將學生分組,要求每組同學采用不同的方法達到設計目的。例如用數字電路設計一個閃爍式LED時序電路,在設計時序發生器時可以采用以下幾種方法:(1)555定時器;(2)慢時鐘;(3)快時鐘,通過計數器來分頻。

篇5

根據教學內容的難易、重點,向學生提出要解決的中心課題,要求他們分析問題情境,探索問題的解決方法。筆者講授《數字電子技術》中“二值邏輯與基本邏輯運算”時先介紹安全帶報警系統,如圖2所示,然后引到學生思考“什么是與邏輯”,之后了解與運算之后,發問“如何用與門實現安全帶報警系統”。通過巧設問題和情境,激發學生那種強烈的探索欲望,使學生處于一種積極的思維狀態。對于教材中比較抽象的概念和原理,在教學中要深入淺出,用形象生動的比喻去幫助學生進行分析理解,提高學習興趣,激發學習熱情。學生沉浸其中,才會學有所思、學有所問、學有所悟、學有所得,才會有新的發現。要想讓學生沉浸于學習還得發揮學生的主體作用。凡學生能夠自己探索得出的,決不替代,凡學生能獨立發現的,決不暗示,盡可能給學生多一點思考的時間。為讓學生深刻理解74HC151七段顯示譯碼器三個輔助端即燈測試輸入、滅燈輸入和鎖存使能輸入端的功能,筆者讓學生根據74HC151的功能表,分析輸出有字形時對應的三個輔助輸入端信號分別是什么,從而得出結論:燈測試輸入端用于檢查譯碼器本身及顯示器各段的好壞,滅燈輸入端用于將不必要的零熄滅,鎖存使能輸入端由0跳變到1時,輸入碼被鎖存,輸出只取決于鎖存器的內容。

3授課要承前啟后,注重教學內容的銜接

在教學中關注知識之間的前后聯系,了解知識的來龍去脈,可以使我們更好地銜接教學內容之間的關系,形成一個系統的知識鏈;在這一基礎上的教學設計,能促進學生利用遷移、轉化的方法來解決問題,能使我們有效合理地進行教學。一方面注意本課程內容的前后銜接,另一方面注意本課程與前后相關課程的銜接。如講全加器時,可以得出全加和S和進位數Co的表達式,分別如式(1)和式(2)所示。根據式(1)、(2)和已經學習的半加器知識。同時,引導學生將式(1)和式(2)分別變換成如式(3)和式(4)所示的最小項表達式。進而,讓學生回憶二進制譯碼器74HC138重要應用之一,即可以實現給定的組合邏輯函數。最終,在引導下,學生得出如圖3(b)所示的電路圖,即用已學的74HC138實現全加器的功能。這樣學生開闊了思維,加深了對已學知識的理解。有意點撥前后課程中與本課程相關的知識點及其應用,讓學生認識到電子技術課程承前啟后的重要作用,激發學習的興趣和熱情,提高學習的主動性,樹立學好電子技術課程的信心。

4理論聯系實際,拓展學生的思維能力

理論教學學生一般感覺枯燥、難學懂。在理論教學的過程中,若能結合具體實驗案例,則能給予學生感性認識,提高學習興趣,進而通過理論學習上升到理性認識,再到實踐環節中,驗證理論,又可促使學生真正理解理論知識,進一步深化理論。對數字電子技術的掌握更重要的是能夠通過電路的學習學到一種思維方式,學會一些分析問題和解決問題的方法。邏輯運算是數字電子技術的基礎,讓學生理解基本運算是重點也是難點。為此,筆者在講授或運算時,“入室盜竊檢測和報警系統”為例講解或運算及或門的應用。這樣一來,學生易于理解或運算的本質及其應用。教學多結合實際,激勵學生不但要具有堅實的理論基礎而且應能夠靈活綜合應用來分析和解決問題。

篇6

1.課堂授課策略的重構

目前,在多數高校中“數字電子技術”課程普遍采用的是“教師講授+多媒體教學”的傳統教學形式,主要以教師講解為主,以幫助學生熟練掌握基礎知識為指導思想,一般是先利用幻燈片向學生介紹本章節涉及的邏輯單元的內部結構、工作原理和邏輯功能等,然后通過例題給學生講解組合邏輯電路或時序邏輯電路的工作原理及其實現過程。在整個課堂教學過程中,學生更多的是充當“聽眾”的角色,跟著教師的思路去理解、記憶相關的知識點,學生的“學”完全圍繞教師的“教”來進行,這種傳統的教師主動“教”的模式,只能帶來學生被動“學”的困境。不可否認,這種教學方法對學生快速掌握課程知識點具有顯著的效果,但是,也會導致學生在未來工作中面對實際的工程項目束手無策的尷尬局面。根據CDIO“做中學,學中做”的理念,教師要改變原有的教學方法,采取能培養學生的自主學習能力和創新能力的基于問題的教學方法(Prob-lembasedLearning,PBL)。PBL教學方式是先由教師在課前提出根據教學目標精心設計的具有啟發性的問題,再由學生通過查閱相關資料學習解決問題的“教與學”緊密結合的過程。在這個教學過程中,作為課堂教學主體之一的教師是學習方法的引導者、基礎知識的講授者、創新教學模式的整體設計者、學習過程的監控者、學習質量的評價者和師生互動之間的協助者;而作為教學過程中心的學生,需要自己解決學習問題,承擔自主學習的責任,成為學習過程的真正主體?!皵底蛛娐芳夹g”課程中組合邏輯電路這部分教學內容,教師可以立足于生活引出“數字顯示搶答器”的設計問題,由學生分組討論并各抒己見,讓學生的自得到尊重,讓學生的學習興趣得以激發,在學生完成設計后,教師在現場用電子電氣設計自動化(ElectronicDesignAutomation,EDA)軟件Multisim搭接電路并仿真實效,對學生的設計做出評價,EDA軟件具體可參考文獻。這樣的教學模式,不僅能讓學生在解決問題的過程中掌握相關的知識技術和學習策略,也有利于學生更好地適應未來職場上創新性的開發工作,而于教師本身而言,也是一個教學相長的過程,對教學水平的提高和職業技能的開拓都大有裨益。

2.教學內容的重構

“數字電子技術”原有課程教學內容以數字邏輯電路的基礎知識和原理為主線,教學目標主要是讓學生了解或驗證相關的知識點。在現有教學內容和目標的框架下,學生雖然能夠掌握單一的知識點及其應用技巧,但不清楚如何在整個項目中合理地使用各類技術,形成“只見樹木,不見森林”的認知習慣,造成學生知識結構的單一性和淺薄性。筆者在教學過程中,經常遇到學生反映教學內容枯燥難懂,在未來工作中又沒有實際意義,由此形成了教學主客體的雙重尷尬局面。在CDIO特色的教學內容體系下,通過項目設計將整個課程體系有機、系統地融合起來,所有的教學內容都圍繞該項目展開;符合CDIO模式思想的“數字電子技術”教學內容,需要教師能從較高層次把握這些內容各自的地位和作用,幫助學生理清課程中各種內容之間的關系,從而凸顯設計和應用,改變過去重視原理、忽視設計、忽視應用的狀況?!皵底蛛娮蛹夹g”課程教學內容以原理、設計和應用為主線,將課程教學內容劃分成與之對應的三個部分:(1)數字電子技術原理部分,涉及邏輯門電路和觸發器等;(2)數字邏輯電子電路設計部分,涉及組合邏輯電路和有記憶功能的時序邏輯電路等;(3)數字電子技術應用部分,涉及硬件描述語言、EDA電子仿真實驗和硬件電路調試實驗等。筆者擬建立基于CDIO特色的“數字電子技術”教學內容體系,如圖1所示,虛線框的內容代表教學內容,實線框的內容代表教學內容相應教學的作用。

3.教學評價模式的重構

在傳統教學評價模式中,理論考試和實踐考試分離,課程考核基本采用單一筆試的考評方式,像大部分課程仍采用“期末成績(70%)+平時成績(30%,包括出勤和作業兩個部分)”的評價模式,該模式簡單公正,但注重的是理論知識的考核。這種考核方式僅僅反映出學生對理論知識的掌握程度,很難體現學生的實踐能力和工作態度;此外,這種只關注結果的考核評價具有較濃的功利色彩,學生也僅僅為考試而學習,沒有主動參與學習過程的熱情,根本體會不到學習的樂趣,更談不到創新能力的提高。CDIO創新教學模式的愿景是要為工科學生提供一種強調工程基礎、建立在實際工程上產品的C—D—I—O過程的環境基礎上的工程教育;而基于CDIO的教育理念構建的課程考核評價方式,應將培養符合產業界的工程師需要具備的各種能力和素質變為學生考核的主要目標。因此,我們擬建立以教師、實驗師和學生三方為主體,結合學習過程、項目結果和考試三方面的綜合評價模式,在這種評價模式下課程的成績評定,采用“結果性”考核與關注學生在學習過程中體現出的態度、素養、人際團隊能力和工程系統能力等“過程性”考核相結合的模式來決定。減少“結果性”期末理論考核在總評中所占比例,設定比例為35%,重點考查學生的知識和技術。加強“過程性”考核的力度,提高平時考核所占比例,學習過程和項目結果占的比例為65%,重點考查學生的能力和態度。學習過程考核主要由課堂表現16分和協作成績14分組成,教師評課堂表現,學生互評協作成績;項目結果考核中項目質量和創新占20分,項目答辯占10分,這兩部分成績是教師和實驗師針對項目團隊打出的,互評成績5分是根據項目組內根據對項目的貢獻程度由學生互評得出,既能使成績總體上取決于團隊成績,使學生重視團隊協作,又能衡量在一個項目組內各學生對項目貢獻的大小。然而,項目設計的結果往往不是唯一答案,因此,要重點關注有特點、亮點的設計方案,并給予大力鼓勵與表揚??傊?,“結果性”和“過程性”課程的考核評價不僅注重知識和技術的評價,而且要注重能力和態度的評價。

篇7

1.創造情境,激發學生興趣。

在教學中創建良好的教學環境,激發學生的學習興趣。例如在課程的“組合邏輯電路設計”教學中,詢問學生有沒有獻過血。通過此問題可以激發學生的好奇心,探究獻血和所學知識的相關性;接著詢問血型匹配知識。通過此問題調動大家探討的積極性;最后提出能否利用所學知識設計一個血型匹配判斷電路。通過前期的情境培養,使學生對“組合邏輯電路設計”知識產生濃厚的興趣。

2.圍繞主題,逐步深入。

學習了典型的時序集成電路后,為了進一步加深學生對集成電路的理解和應用,繼而引導學生作進一步討論:能否用現有知識設計數字電子鐘?數字電子鐘的設計包含哪些模塊?學生對數字電子鐘比較熟悉,能夠確定數字電子鐘需要實現哪些功能。學生通過研究和討論,設計出數字電子鐘的總體結構圖。數字電子鐘的模塊包括:秒脈沖信號產生、計數、譯碼、校時和顯示等基本模塊,利用Multisim仿真軟件實現各電路模塊的獨立調試和仿真,再進行系統的級聯調試。在此過程中,教師應引導學生思考數字電子鐘的關鍵問題:秒脈沖信號如何產生?時計數電路,即二十四進制計數電路如何設計與實現?分、秒計數電路,即六十進制計數電路如何設計與實現?時(分、秒)譯碼電路如何設計與實現?時(分、秒)顯示電路如何設計與實現?怎樣實現對時、分的校準。

3.模塊化設計,團隊合作。

基本設計思路確定以后,進入項目的實施階段。在對學生進行分組時,應從多個方面考慮團隊成員的組合,如知識結構、特長、性格等。確定了小組成員后,明確每位同學職責。項目負責人將項目任務模塊化,負責項目的整體組織和協調,確保項目有條不紊地開展;成員兩人一組完成子模塊的設計與調試;最后以小組為單位,梳理項目,由項目負責人組織編寫和完善所有項目文檔和報告。在項目的設計過程中,學生參考他人的設計及實現方法時,主要是學習他人的設計方法,如編碼、接口和電路的工作原理,而不是原封不動地使用他人的電路。在項目的方案論證過程中,鼓勵學生開展討論。學生可以通過提方案、相互補充和正反對比等多種探討思路,對所擬定的方案進行仿真或試驗驗證。教師在這一環節中力求全面把握學生動向,主動獲取學生設計過程中的認知錯誤,加以指導。最后學生可以得出電子鐘每一子模塊的設計內容。數字電子鐘的第一部分是時間基準,即時鐘。學生通過查閱資料發現,為了獲得可能的最高精度,時鐘電路選擇比較常見的32.768kHz的晶振,而32768是2的15次方,所以對這種晶振進行15次分頻的話,就可以得到準確穩定的1Hz的標準時鐘信號。數字電子鐘的第二部分是秒計數器。秒計數器的工作原理為:給其裝載一個初始值并執行減計數至零。當計數到達零時,產生一個時鐘脈沖并將其傳遞給分計數器。在這里,裝載的初始值根據需要設定的時間和時鐘基準信號來計算,若時鐘基準信號為1Hz,則60s的設定時間所需的初始值為60,若時鐘基準信號為2Hz,則60s的設定時間所需的初始值為120。也就是說,裝載的初始值等于需要設定的時間乘以時鐘基準信號。數字電子鐘的第三部分是分計數器,它實現分的計數和顯示,且進行小時比較。每當秒計數器減至零時,分計數器加1。電路需包含一個比較電路的8位計數器,以實現分的復位并使小時計數器加1。通過仿真,學生發現,為了保證LED顯示的正確性,當復位為零時,設置顯示值為59。數字電子鐘的第四部分是時計數器,當分計數器計數到60時,小時計數器加1。在計數器的設計過程中,學生最容易忽略計數器的工作特性,在仿真時就會出現問題。例如,在電子鐘設計中計數器選用74LS193時,就要考慮其工作特性,在分計數器的值小于而不是等于60的那一個時刻加1。這樣做可以避免使用額外的邏輯運算,來使比較器的輸出轉化為小時計數器的輸入時鐘脈沖。小時計數器電路中也應該包含一個比較器,用以檢測當前值是否為12(電子鐘小時顯示為12進制),如果是,立即將小時計數器復位。

4.總結問題,共同研討。

在項目教學實施的過程中,教師在做到整體掌握、全程引導的同時,還要尊重學生的設計,協助學生解決遇到的難題。如學生在校時電路的設計中遇到了如下問題:校時電路的開關在接通和斷開時均存在抖動問題,使電路無法正常工作。這時學生在教師的鼓勵、引導下查閱資料,了解到常用的消除抖動的方法:軟實現(編程實現)、硬件實現。軟實現即處理器查詢或者監視開關的狀態,當開關在規定時間內沒有改變狀態時,即認為開關已經不再抖動。常用的硬件去抖動的方法有:(1)使用施密特觸發器電路;(2)使用CMOS555定時器;(3)基本RS鎖存器電路。利用施密特觸發器電路消除抖動時,應確保施密特觸發器的門限電壓盡可能小,以保證能被電容上的電壓觸發;當開關存在很多抖動時,最好的方法是采用CMOS555定時器構建單穩態電路來消除抖動。當開關按下時,555定時器可以輸出一個穩定的脈沖信號,代替開關來觸發實際;利用基本RS鎖存器電路,將鎖存器的S端接開關輸入,R端接應用電路,將開關的狀態鎖存,當操作完成后取消鎖存。學生可以分組,應用不同的方法消除抖動,比較去抖動的效果,確定最佳方案。學生通過查閱資料,不僅解決了設計中遇到的問題,同時也發散了思維,擴展了知識面。

5.時序仿真,實現目標。

學生通過原理圖設計,得到了秒脈沖信號、二十四進制計數器、六十進制計數器,通過仿真可以得到其時序圖,引導學生總結利用集成計數器芯片實現其他進制計數器的方法,最后通過級聯實現數字鐘的設計和仿真。每個小組實現項目設計后,教師應對學生作品進行評價,項目組負責人應向全班匯報并展示本組設計的作品,列舉在項目實施過程中遇到的問題及解決方案。

6.拓展項目,鼓勵創新。

在學生實現了項目任務時,教師可以引導學生進行項目的拓展,增強學生的靈活應用能力和創新能力。鼓勵學生進行討論,如現在市場上的電子鐘定時有何特點,學生自身對定時功能有何要求等。學生可以通過提方案、互相補充、多方面對比等探討過程,實現電子鐘個性化定時的設計。在這一過程中,學生不僅學會思維探索,而且提高了對知識的理解記憶,為課程學習打下了堅實基礎。不要局限于一套設計方案。在系統設計前,將學生分組,要求每組同學采用不同的方法達到設計目的。例如用數字電路設計一個閃爍式LED時序電路,在設計時序發生器時可以采用以下幾種方法:(1)555定時器;(2)慢時鐘;(3)快時鐘,通過計數器來分頻。

篇8

針對學生學習的現狀,首先強調《電子技術》課程的重要性,不必拘泥于教材的知識,以及電路內部復雜的結構,多強調元件、電路的功能和作用,以及在實踐調試中的注意事項。有條件的可以進行一體化教學,兩小節課程,第一小節理論講解,第二小節學生操作訓練,增強了學生對電子元件和電路的感性認識,還可以熟練掌握萬用表、示波器、直流穩壓電源、信號源等儀器儀表的操作,通過一體化教學使得教學目標明確,提高了教學效果。根據學生學習掌握的狀況,訓練其創造性思維能力,根據電子技術的發展方向和學生的知識結構進行科學合理的安排內容。如適當引入數字信號處理技術(DSP)、嵌入式技術(ARM)、電子設計自動化技術(EDA)技術,以及未來電子技術的發展方向微電子技術、納米電子技術。在當今日新月異的世界里,《電子技術》講授的內容也應該與時俱進,因此教師應該不斷的學習新理論、新技術、新方法,使培養的學生畢業后盡快與社會同步接軌。還可以考慮引入PPT、視頻、動畫等教學方法及手段,突出重點、突出難點,提高教學效果。在實驗教學方面,在保證基本的實驗技能和操作能力培養的前提下,適當減少基礎性驗證實驗,增加設計性實驗內容。如數字電路實驗中的智力競賽搶答裝置,它具有公共置0端和公共CP端;F2為雙4輸入與非門74LS20;F3是由74LS00組成的多諧振蕩器;F4是由74LS74組成的四分頻電路,F3、F4組成搶答電路中的CP時鐘脈沖源,搶答開始時,由主持人清除信號,按下復位開關S,74LS175的輸出Q1~Q4全為0,所有發光二極管LED均熄滅,當主持人宣布“搶答開始”后,首先作出判斷的參賽者立即按下開關,對應的發光二極管點亮,同時,通過與非門F2送出信號鎖住其余三個搶答者的電路,不再接受其它信號,直到主持人再次清除信號為止。若學生掌握的操作技能,則學生就掌握了觸發器電路、邏輯門電路、振蕩器電路、分頻電路、時鐘電路、發光二極管電路等多個電路知識。做好《電子技術》教學還要重視師資隊伍建設,有了好的老師、好的教學方法、好的教學理念才能教出好的學生。應該打破傳統的理論教學教師與實驗教學隊伍的界限,理論任課教師也應該積極參與實驗教學、實驗項目的改造和實驗室建設,將理論教學與實踐教學有力地結合在一起,積極參與科研課題的申報與實施,使理論與實踐教學與時俱進。鼓勵教師參加一些權威部門組織的教學改革研討會,利用好假期時間參加一些國培項目,鼓勵教師深造學習,深入生產、建設、服務第一線,及時了解行業發展的動態,結合實踐教學開展科研活動,撰寫科研論文,不斷提高教學水平。教師的教學效果與考核相掛鉤,可以提高教師學習的積極性。近期,西安航空職業技術學院電子工程學院組織教師積極參與微課的制作與教學,取得了較好的教學效果。利用仿真軟件教學可以補充硬件教學資源的不足,節約教學經費,使學生較容易的掌握各種儀器的基本使用方法、電路參數的測試方法,使每個人都能親自動手接觸電路,進行元件接線、參數設定、數據測量并與理論計算結果進行對照,增強對電子線路的感性認識,提高教學效果?!峨娮泳€路》常用的教學仿真軟件有EWB、Protrus、Multisim、虛擬儀器等,為Protrus軟件連接的八路彩燈仿真效果圖。Protrus軟件連接的八路彩燈仿真效果圖重視學生社團的建設與發展。學生社團的成員們具有相同的興趣和愛好,他們來自不同的專業、不同的年級,知識結構、能力結構具有交叉性和互補性,可以按照自己的意圖和方案進行設計創新。此外,學生社團活動方式的實踐性與靈活性、自由寬松的氛圍、平等的師生關系都為實踐創新訓練提供了有利的條件。西安航空職業技術學院電子工程學院電子俱樂部2003年5月成立,是在原來便民服務小組基礎上發展起來的,本著“服務大家,提高自己”為宗旨,以鍛煉為主導、以求知為目標、發揚雷鋒精神、充實自己、服務于人的思想,適時開展義務維修活動,普及電子科普知識。社團經過12多年的發展,現擁有創作部、維修部、電腦部、宣傳部、技術團等5個部門,300多名社員。電子俱樂部自成立以來,在學院、團委、電子工程學院等部門的領導及指導教師的關懷下,以及全體社員的共同努力下,多次在校園、社區開展便民電器義務維修活動,多次進行三下鄉電器義務維修、支教活動;以電子俱樂部成員們多次參見校園、省級、國家級電子技術類競賽,取得了驕人的成績。2006年電子俱樂部獲得了“省級優秀社團”的光榮稱號,2007年、2010年電子俱樂部獲得“院級優秀社團”的光榮稱號。對于課程的考核不應該僅僅局限于期末考試筆試的成績,應該增加平時成績的比例,老師可以參考學生平時的作業、實驗實訓操作的情況,電子技術類競賽獲獎的學生成績可以適當加分,對現在的考核方式進行適當的調整,可以激發學生學習的積極性與主動性。

篇9

大功率的工業用電由工頻(50Hz)交流發電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領域。大功率硅整流器能夠高效率地把工頻交流電轉變為直流電,因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發與應用得以很大發展。當時國內曾經掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導體廠家就是那時的產物。

1.2逆變器時代

七十年代出現了世界范圍的能源危機,交流電機變頻惆速因節能效果顯著而迅速發展。變頻調速的關鍵技術是將直流電逆變為0~100Hz的交流電。在七十年代到八十年代,隨著變頻調速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應用還包括高壓直流輸出,靜止式無功功率動態補償等。這時的電力電子技術已經能夠實現整流和逆變,但工作頻率較低,僅局限在中低頻范圍內。

1.3變頻器時代

進入八十年代,大規模和超大規模集成電路技術的迅猛發展,為現代電力電子技術的發展奠定了基礎。將集成電路技術的精細加工技術和高壓大電流技術有機結合,出現了一批全新的全控型功率器件、首先是功率M0SFET的問世,導致了中小功率電源向高頻化發展,而后絕緣門極雙極晶體管(IGBT)的出現,又為大中型功率電源向高頻發展帶來機遇。MOSFET和IGBT的相繼問世,是傳統的電力電子向現代電力電子轉化的標志。據統計,到1995年底,功率M0SFET和GTR在功率半導體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領域巳成定論。新型器件的發展不僅為交流電機變頻調速提供了較高的頻率,使其性能更加完善可靠,而且使現代電子技術不斷向高頻化發展,為用電設備的高效節材節能,實現小型輕量化,機電一體化和智能化提供了重要的技術基礎。

2.現代電力電子的應用領域

2.1計算機高效率綠色電源

高速發展的計算機技術帶領人類進入了信息社會,同時也促進了電源技術的迅速發展。八十年代,計算機全面采用了開關電源,率先完成計算機電源換代。接著開關電源技術相繼進人了電子、電器設備領域。

計算機技術的發展,提出綠色電腦和綠色電源。綠色電腦泛指對環境無害的個人電腦和相關產品,綠色電源系指與綠色電腦相關的高效省電電源,根據美國環境保護署l992年6月17日“能源之星"計劃規定,桌上型個人電腦或相關的設備,在睡眠狀態下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關電源而言,電源自身要消耗50瓦的能源。

2.2通信用高頻開關電源

通信業的迅速發展極大的推動了通信電源的發展。高頻小型化的開關電源及其技術已成為現代通信供電系統的主流。在通信領域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統的相控式穩壓電源己被高頻開關電源取代,高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50-100kHz范圍內,實現高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。

因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。

2.3直流-直流(DC/DC)變換器

DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術被廣泛應用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩、快速響應的性能,并同時收到節約電能的效果。用直流斬波器代替變阻器可節約電能(20~30)%。直流斬波器不僅能起調壓的作用(開關電源),同時還能起到有效地抑制電網側諧波電流噪聲的作用。

通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術,開關頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規模集成電路的發展,要求電源模塊實現小型化,因此就要不斷提高開關頻率和采用新的電路拓撲結構,目前已有一些公司研制生產了采用零電流開關和零電壓開關技術的二次電源模塊,功率密度有較大幅度的提高。

2.4不間斷電源(UPS)

不間斷電源(UPS)是計算機、通信系統以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經逆變器變成交流,經轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現。

現代UPS普遍了采用脈寬調制技術和功率M0SFET、IGBT等現代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術的引入,可以實現對UPS的智能化管理,進行遠程維護和遠程診斷。

目前在線式UPS的最大容量已可作到600kVA。超小型UPS發展也很迅速,已經有0.5kVA、lkVA、2kVA、3kVA等多種規格的產品。

2.5變頻器電源

變頻器電源主要用于交流電機的變頻調速,其在電氣傳動系統中占據的地位日趨重要,已獲得巨大的節能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅動交流異步電動機實現無級調速。

國際上400kVA以下的變頻器電源系列產品已經問世。八十年代初期,日本東芝公司最先將交流變頻調速技術應用于空調器中。至1997年,其占有率已達到日本家用空調的70%以上。變頻空調具有舒適、節能等優點。國內于90年代初期開始研究變頻空調,96年引進生產線生產變頻空調器,逐漸形成變頻空調開發生產熱點。預計到2000年左右將形成。變頻空調除了變頻電源外,還要求有適合于變頻調速的壓縮機電機。優化控制策略,精選功能組件,是空調變頻電源研制的進一步發展方向。

2.6高頻逆變式整流焊機電源

高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應用前景。

逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經高頻變壓器耦合,整流濾波后成為穩定的直流,供電弧使用。

由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關鍵的問題,也是用戶最關心的問題。采用微處理器做為脈沖寬度調制(PWM)的相關控制器,通過對多參數、多信息的提取與分析,達到預知系統各種工作狀態的目的,進而提前對系統做出調整和處理,解決了目前大功率IGBT逆變電源可靠性。

國外逆變焊機已可做到額定焊接電流300A,負載持續率60%,全載電壓60~75V,電流調節范圍5~300A,重量29kg。

2.7大功率開關型高壓直流電源

大功率開關型高壓直流電源廣泛應用于靜電除塵、水質改良、醫用X光機和CT機等大型設備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。

自從70年代開始,日本的一些公司開始采用逆變技術,將市電整流后逆變為3kHz左右的中頻,然后升壓。進入80年代,高頻開關電源技術迅速發展。德國西門子公司采用功率晶體管做主開關元件,將電源的開關頻率提高到20kHz以上。并將干式變壓器技術成功的應用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統的體積進一步減小。

國內對靜電除塵高壓直流電源進行了研制,市電經整流變為直流,采用全橋零電流開關串聯諧振逆變電路將直流電壓逆變為高頻電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。

2.8電力有源濾波器

傳統的交流-直流(AC-DC)變換器在投運時,將向電網注入大量的諧波電流,引起諧波損耗和干擾,同時還出現裝置網側功率因數惡化的現象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網側三次諧波含量可達(70~80)%,網側功率因數僅有0.5~0.6。

電力有源濾波器是一種能夠動態抑制諧波的新型電力電子裝置,能克服傳統LC濾波器的不足,是一種很有發展前途的諧波抑制手段。濾波器由橋式開關功率變換器和具體控制電路構成。與傳統開關電源的區別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環基準信號為電壓環誤差信號與全波整流電壓取樣信號之乘積。

2.9分布式開關電源供電系統

分布式電源供電系統采用小功率模塊和大規??刂萍呻娐纷骰静考?利用最新理論和技術成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產效率。

八十年代初期,對分布式高頻開關電源系統的研究基本集中在變換器并聯技術的研究上。八十年代中后期,隨著高頻功率變換技術的迅述發展,各種變換器拓撲結構相繼出現,結合大規模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學界的研究熱點,論文數量逐年增加,應用領域不斷擴大。

分布供電方式具有節能、可靠、高效、經濟和維護方便等優點。已被大型計算機、通信設備、航空航天、工業控制等系統逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。

3.高頻開關電源的發展趨勢

在電力電子技術的應用及各種電源系統中,開關電源技術均處于核心地位。對于大型電解電鍍電源,傳統的電路非常龐大而笨重,如果采用高頓開關電源技術,其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關電源技術,通過開關電源改變用電頻率,從而達到近于理想的負載匹配和驅動控制。高頻開關電源技術,更是各種大功率開關電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術。

3.1高頻化

理論分析和實踐經驗表明,電氣產品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設備的體積重量大體下降至工頻設計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關式整流器,都是基于這一原理。同樣,傳統“整流行業”的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據這一原理進行改造,成為“開關變換類電源”,其主要材料可以節約90%或更高,還可節電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統高頻設備固態化,帶來顯著節能、節水、節約材料的經濟效益,更可體現技術含量的價值。

3.2模塊化

模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關器件和與之反并聯的續流二極管,實質上都屬于“標準”功率模塊(SPM)。近年,有些公司把開關器件的驅動保護電路也裝到功率模塊中去,構成了“智能化”功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應力(表現為過電壓、過電流毛刺)。為了提高系統的可靠性,有些制造商開發了“用戶專用”功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統的引線連接,這樣的模塊經過嚴格、合理的熱、電、機械方面的設計,達到優化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應的散熱器上,就構成一臺新型的開關電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統連線,把寄生參數降到最小,從而把器件承受的電應力降至最低,提高系統的可靠性。另外,大功率的開關電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯工作,采用均流技術,所有模塊共同分擔負載電流,一旦其中某個模塊失效,其它模塊再平均分擔負載電流。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統來說功率很小的冗余電源模塊,極大的提高系統可靠性,即使萬一出現單模塊故障,也不會影響系統的正常工作,而且為修復提供充分的時間。

3.3數字化

在傳統功率電子技術中,控制部分是按模擬信號來設計和工作的。在六、七十年代,電力電子技術完全是建立在模擬電路基礎上的。但是,現在數字式信號、數字電路顯得越來越重要,數字信號處理技術日趨完善成熟,顯示出越來越多的優點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調試和遙感遙測遙調,也便于自診斷、容錯等技術的植入。所以,在八、九十年代,對于各類電路和系統的設計來說,模擬技術還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數修正(PFC)等問題的解決,離不開模擬技術的知識,但是對于智能化的開關電源,需要用計算機控制時,數字化技術就離不開了。

3.4綠色化

電源系統的綠色化有兩層含義:首先是顯著節電,這意味著發電容量的節約,而發電是造成環境污染的重要原因,所以節電就可以減少對環境的污染;其次這些電源不能(或少)對電網產生污染,國際電工委員會(IEC)對此制定了一系列標準,如IEC555、IEC917、IECl000等。事實上,許多功率電子節電設備,往往會變成對電網的污染源:向電網注入嚴重的高次諧波電流,使總功率因數下降,使電網電壓耦合許多毛刺尖峰,甚至出現缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數的方法。這些為2l世紀批量生產各種綠色開關電源產品奠定了基礎。

現代電力電子技術是開關電源技術發展的基礎。隨著新型電力電子器件和適于更高開關頻率的電路拓撲的不斷出現,現代電源技術將在實際需要的推動下快速發展。在傳統的應用技術下,由于功率器件性能的限制而使開關電源的性能受到影響。為了極大發揮各種功率器件的特性,使器件性能對開關電源性能的影響減至最小,新型的電源電路拓撲和新型的控制技術,可使功率開關工作在零電壓或零電流狀態,從而可大大的提高工作頻率,提高開關電源工作效率,設計出性能優良的開關電源。

總而言之,電力電子及開關電源技術因應用需求不斷向前發展,新技術的出現又會使許多應用產品更新換代,還會開拓更多更新的應用領域。開關電源高頻化、模塊化、數字化、綠色化等的實現,將標志著這些技術的成熟,實現高效率用電和高品質用電相結合。這幾年,隨著通信行業的發展,以開關電源技術為核心的通信用開關電源,僅國內有20多億人民幣的市場需求,吸引了國內外一大批科技人員對其進行開發研究。開關電源代替線性電源和相控電源是大勢所趨,因此,同樣具有幾十億產值需求的電力操作電源系統的國內市場正在啟動,并將很快發展起來。還有其它許多以開關電源技術為核心的專用電源、工業電源正在等待著人們去開發。

參考文獻

(l)林渭勛:淺談半導體高頻電力電子技術,電力電子技術選編,浙江大學,384-390,1992

篇10

現代電力電子技術的發展方向,是從以低頻技術處理問題為主的傳統電力電子學,向以高頻技術處理問題為主的現代電力電子學方向轉變。電力電子技術起始于五十年代末六十年代初的硅整流器件,其發展先后經歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術在許多新領域的應用。八十年代末期和九十年代初期發展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導體復合器件,表明傳統電力電子技術已經進入現代電力電子時代。

1.1整流器時代

大功率的工業用電由工頻(50Hz)交流發電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領域。大功率硅整流器能夠高效率地把工頻交流電轉變為直流電,因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發與應用得以很大發展。當時國內曾經掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導體廠家就是那時的產物。

1.2逆變器時代

七十年代出現了世界范圍的能源危機,交流電機變頻惆速因節能效果顯著而迅速發展。變頻調速的關鍵技術是將直流電逆變為0~100Hz的交流電。在七十年代到八十年代,隨著變頻調速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應用還包括高壓直流輸出,靜止式無功功率動態補償等。這時的電力電子技術已經能夠實現整流和逆變,但工作頻率較低,僅局限在中低頻范圍內。

1.3變頻器時代

進入八十年代,大規模和超大規模集成電路技術的迅猛發展,為現代電力電子技術的發展奠定了基礎。將集成電路技術的精細加工技術和高壓大電流技術有機結合,出現了一批全新的全控型功率器件、首先是功率M0SFET的問世,導致了中小功率電源向高頻化發展,而后絕緣門極雙極晶體管(IGBT)的出現,又為大中型功率電源向高頻發展帶來機遇。MOSFET和IGBT的相繼問世,是傳統的電力電子向現代電力電子轉化的標志。據統計,到1995年底,功率M0SFET和GTR在功率半導體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領域巳成定論。新型器件的發展不僅為交流電機變頻調速提供了較高的頻率,使其性能更加完善可靠,而且使現代電子技術不斷向高頻化發展,為用電設備的高效節材節能,實現小型輕量化,機電一體化和智能化提供了重要的技術基礎。

2.現代電力電子的應用領域

2.1計算機高效率綠色電源

高速發展的計算機技術帶領人類進入了信息社會,同時也促進了電源技術的迅速發展。八十年代,計算機全面采用了開關電源,率先完成計算機電源換代。接著開關電源技術相繼進人了電子、電器設備領域。

計算機技術的發展,提出綠色電腦和綠色電源。綠色電腦泛指對環境無害的個人電腦和相關產品,綠色電源系指與綠色電腦相關的高效省電電源,根據美國環境保護署l992年6月17日“能源之星"計劃規定,桌上型個人電腦或相關的設備,在睡眠狀態下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關電源而言,電源自身要消耗50瓦的能源。

2.2通信用高頻開關電源

通信業的迅速發展極大的推動了通信電源的發展。高頻小型化的開關電源及其技術已成為現代通信供電系統的主流。在通信領域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統的相控式穩壓電源己被高頻開關電源取代,高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50-100kHz范圍內,實現高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。

因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。

2.3直流-直流(DC/DC)變換器

DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術被廣泛應用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩、快速響應的性能,并同時收到節約電能的效果。用直流斬波器代替變阻器可節約電能(20~30)%。直流斬波器不僅能起調壓的作用(開關電源),同時還能起到有效地抑制電網側諧波電流噪聲的作用。

通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術,開關頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規模集成電路的發展,要求電源模塊實現小型化,因此就要不斷提高開關頻率和采用新的電路拓撲結構,目前已有一些公司研制生產了采用零電流開關和零電壓開關技術的二次電源模塊,功率密度有較大幅度的提高。

2.4不間斷電源(UPS)

不間斷電源(UPS)是計算機、通信系統以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經逆變器變成交流,經轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現。

現代UPS普遍了采用脈寬調制技術和功率M0SFET、IGBT等現代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術的引入,可以實現對UPS的智能化管理,進行遠程維護和遠程診斷。

目前在線式UPS的最大容量已可作到600kVA。超小型UPS發展也很迅速,已經有0.5kVA、lkVA、2kVA、3kVA等多種規格的產品。

2.5變頻器電源

變頻器電源主要用于交流電機的變頻調速,其在電氣傳動系統中占據的地位日趨重要,已獲得巨大的節能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅動交流異步電動機實現無級調速。

國際上400kVA以下的變頻器電源系列產品已經問世。八十年代初期,日本東芝公司最先將交流變頻調速技術應用于空調器中。至1997年,其占有率已達到日本家用空調的70%以上。變頻空調具有舒適、節能等優點。國內于90年代初期開始研究變頻空調,96年引進生產線生產變頻空調器,逐漸形成變頻空調開發生產熱點。預計到2000年左右將形成。變頻空調除了變頻電源外,還要求有適合于變頻調速的壓縮機電機。優化控制策略,精選功能組件,是空調變頻電源研制的進一步發展方向。

2.6高頻逆變式整流焊機電源

高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應用前景。

逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經高頻變壓器耦合,整流濾波后成為穩定的直流,供電弧使用。

由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關鍵的問題,也是用戶最關心的問題。采用微處理器做為脈沖寬度調制(PWM)的相關控制器,通過對多參數、多信息的提取與分析,達到預知系統各種工作狀態的目的,進而提前對系統做出調整和處理,解決了目前大功率IGBT逆變電源可靠性。

國外逆變焊機已可做到額定焊接電流300A,負載持續率60%,全載電壓60~75V,電流調節范圍5~300A,重量29kg。

2.7大功率開關型高壓直流電源

大功率開關型高壓直流電源廣泛應用于靜電除塵、水質改良、醫用X光機和CT機等大型設備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。

自從70年代開始,日本的一些公司開始采用逆變技術,將市電整流后逆變為3kHz左右的中頻,然后升壓。進入80年代,高頻開關電源技術迅速發展。德國西門子公司采用功率晶體管做主開關元件,將電源的開關頻率提高到20kHz以上。并將干式變壓器技術成功的應用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統的體積進一步減小。

國內對靜電除塵高壓直流電源進行了研制,市電經整流變為直流,采用全橋零電流開關串聯諧振逆變電路將直流電壓逆變為高頻電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。

2.8電力有源濾波器

傳統的交流-直流(AC-DC)變換器在投運時,將向電網注入大量的諧波電流,引起諧波損耗和干擾,同時還出現裝置網側功率因數惡化的現象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網側三次諧波含量可達(70~80)%,網側功率因數僅有0.5~0.6。

電力有源濾波器是一種能夠動態抑制諧波的新型電力電子裝置,能克服傳統LC濾波器的不足,是一種很有發展前途的諧波抑制手段。濾波器由橋式開關功率變換器和具體控制電路構成。與傳統開關電源的區別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環基準信號為電壓環誤差信號與全波整流電壓取樣信號之乘積。

2.9分布式開關電源供電系統

分布式電源供電系統采用小功率模塊和大規模控制集成電路作基本部件,利用最新理論和技術成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產效率。

八十年代初期,對分布式高頻開關電源系統的研究基本集中在變換器并聯技術的研究上。八十年代中后期,隨著高頻功率變換技術的迅述發展,各種變換器拓撲結構相繼出現,結合大規模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學界的研究熱點,論文數量逐年增加,應用領域不斷擴大。

分布供電方式具有節能、可靠、高效、經濟和維護方便等優點。已被大型計算機、通信設備、航空航天、工業控制等系統逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。

3.高頻開關電源的發展趨勢

在電力電子技術的應用及各種電源系統中,開關電源技術均處于核心地位。對于大型電解電鍍電源,傳統的電路非常龐大而笨重,如果采用高頓開關電源技術,其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關電源技術,通過開關電源改變用電頻率,從而達到近于理想的負載匹配和驅動控制。高頻開關電源技術,更是各種大功率開關電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術。

3.1高頻化

理論分析和實踐經驗表明,電氣產品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設備的體積重量大體下降至工頻設計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關式整流器,都是基于這一原理。同樣,傳統“整流行業”的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據這一原理進行改造,成為“開關變換類電源”,其主要材料可以節約90%或更高,還可節電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統高頻設備固態化,帶來顯著節能、節水、節約材料的經濟效益,更可體現技術含量的價值。

3.2模塊化

模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關器件和與之反并聯的續流二極管,實質上都屬于“標準”功率模塊(SPM)。近年,有些公司把開關器件的驅動保護電路也裝到功率模塊中去,構成了“智能化”功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應力(表現為過電壓、過電流毛刺)。為了提高系統的可靠性,有些制造商開發了“用戶專用”功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統的引線連接,這樣的模塊經過嚴格、合理的熱、電、機械方面的設計,達到優化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應的散熱器上,就構成一臺新型的開關電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統連線,把寄生參數降到最小,從而把器件承受的電應力降至最低,提高系統的可靠性。另外,大功率的開關電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯工作,采用均流技術,所有模塊共同分擔負載電流,一旦其中某個模塊失效,其它模塊再平均分擔負載電流。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統來說功率很小的冗余電源模塊,極大的提高系統可靠性,即使萬一出現單模塊故障,也不會影響系統的正常工作,而且為修復提供充分的時間。

3.3數字化

在傳統功率電子技術中,控制部分是按模擬信號來設計和工作的。在六、七十年代,電力電子技術完全是建立在模擬電路基礎上的。但是,現在數字式信號、數字電路顯得越來越重要,數字信號處理技術日趨完善成熟,顯示出越來越多的優點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調試和遙感遙測遙調,也便于自診斷、容錯等技術的植入。所以,在八、九十年代,對于各類電路和系統的設計來說,模擬技術還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數修正(PFC)等問題的解決,離不開模擬技術的知識,但是對于智能化的開關電源,需要用計算機控制時,數字化技術就離不開了。

3.4綠色化

篇11

大功率的工業用電由工頻(50Hz)交流發電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領域。大功率硅整流器能夠高效率地把工頻交流電轉變為直流電,因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發與應用得以很大發展。當時國內曾經掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導體廠家就是那時的產物。

1.2逆變器時代

七十年代出現了世界范圍的能源危機,交流電機變頻惆速因節能效果顯著而迅速發展。變頻調速的關鍵技術是將直流電逆變為0~100Hz的交流電。在七十年代到八十年代,隨著變頻調速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應用還包括高壓直流輸出,靜止式無功功率動態補償等。這時的電力電子技術已經能夠實現整流和逆變,但工作頻率較低,僅局限在中低頻范圍內。

1.3變頻器時代

進入八十年代,大規模和超大規模集成電路技術的迅猛發展,為現代電力電子技術的發展奠定了基礎。將集成電路技術的精細加工技術和高壓大電流技術有機結合,出現了一批全新的全控型功率器件、首先是功率M0SFET的問世,導致了中小功率電源向高頻化發展,而后絕緣門極雙極晶體管(IGBT)的出現,又為大中型功率電源向高頻發展帶來機遇。MOSFET和IGBT的相繼問世,是傳統的電力電子向現代電力電子轉化的標志。據統計,到1995年底,功率M0SFET和GTR在功率半導體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領域巳成定論。新型器件的發展不僅為交流電機變頻調速提供了較高的頻率,使其性能更加完善可靠,而且使現代電子技術不斷向高頻化發展,為用電設備的高效節材節能,實現小型輕量化,機電一體化和智能化提供了重要的技術基礎。

2.現代電力電子的應用領域

2.1計算機高效率綠色電源

高速發展的計算機技術帶領人類進入了信息社會,同時也促進了電源技術的迅速發展。八十年代,計算機全面采用了開關電源,率先完成計算機電源換代。接著開關電源技術相繼進人了電子、電器設備領域。

計算機技術的發展,提出綠色電腦和綠色電源。綠色電腦泛指對環境無害的個人電腦和相關產品,綠色電源系指與綠色電腦相關的高效省電電源,根據美國環境保護署l992年6月17日"能源之星"計劃規定,桌上型個人電腦或相關的設備,在睡眠狀態下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關電源而言,電源自身要消耗50瓦的能源。

2.2通信用高頻開關電源

通信業的迅速發展極大的推動了通信電源的發展。高頻小型化的開關電源及其技術已成為現代通信供電系統的主流。在通信領域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統的相控式穩壓電源己被高頻開關電源取代,高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50-100kHz范圍內,實現高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。

因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。

2.3直流-直流(DC/DC)變換器

DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術被廣泛應用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩、快速響應的性能,并同時收到節約電能的效果。用直流斬波器代替變阻器可節約電能(20~30)%。直流斬波器不僅能起調壓的作用(開關電源),同時還能起到有效地抑制電網側諧波電流噪聲的作用。

通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術,開關頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規模集成電路的發展,要求電源模塊實現小型化,因此就要不斷提高開關頻率和采用新的電路拓撲結構,目前已有一些公司研制生產了采用零電流開關和零電壓開關技術的二次電源模塊,功率密度有較大幅度的提高。

2.4不間斷電源(UPS)

不間斷電源(UPS)是計算機、通信系統以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經逆變器變成交流,經轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現。

現代UPS普遍了采用脈寬調制技術和功率M0SFET、IGBT等現代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術的引入,可以實現對UPS的智能化管理,進行遠程維護和遠程診斷。

目前在線式UPS的最大容量已可作到600kVA。超小型UPS發展也很迅速,已經有0.5kVA、lkVA、2kVA、3kVA等多種規格的產品。

2.5變頻器電源

變頻器電源主要用于交流電機的變頻調速,其在電氣傳動系統中占據的地位日趨重要,已獲得巨大的節能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅動交流異步電動機實現無級調速。

國際上400kVA以下的變頻器電源系列產品已經問世。八十年代初期,日本東芝公司最先將交流變頻調速技術應用于空調器中。至1997年,其占有率已達到日本家用空調的70%以上。變頻空調具有舒適、節能等優點。國內于90年代初期開始研究變頻空調,96年引進生產線生產變頻空調器,逐漸形成變頻空調開發生產熱點。預計到2000年左右將形成。變頻空調除了變頻電源外,還要求有適合于變頻調速的壓縮機電機。優化控制策略,精選功能組件,是空調變頻電源研制的進一步發展方向。

2.6高頻逆變式整流焊機電源

高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應用前景。

逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經高頻變壓器耦合,整流濾波后成為穩定的直流,供電弧使用。

由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關鍵的問題,也是用戶最關心的問題。采用微處理器做為脈沖寬度調制(PWM)的相關控制器,通過對多參數、多信息的提取與分析,達到預知系統各種工作狀態的目的,進而提前對系統做出調整和處理,解決了目前大功率IGBT逆變電源可靠性。

國外逆變焊機已可做到額定焊接電流300A,負載持續率60%,全載電壓60~75V,電流調節范圍5~300A,重量29kg。

2.7大功率開關型高壓直流電源

大功率開關型高壓直流電源廣泛應用于靜電除塵、水質改良、醫用X光機和CT機等大型設備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。

自從70年代開始,日本的一些公司開始采用逆變技術,將市電整流后逆變為3kHz左右的中頻,然后升壓。進入80年代,高頻開關電源技術迅速發展。德國西門子公司采用功率晶體管做主開關元件,將電源的開關頻率提高到20kHz以上。并將干式變壓器技術成功的應用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統的體積進一步減小。

國內對靜電除塵高壓直流電源進行了研制,市電經整流變為直流,采用全橋零電流開關串聯諧振逆變電路將直流電壓逆變為高頻電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。

2.8電力有源濾波器

傳統的交流-直流(AC-DC)變換器在投運時,將向電網注入大量的諧波電流,引起諧波損耗和干擾,同時還出現裝置網側功率因數惡化的現象,即所謂"電力公害",例如,不可控整流加電容濾波時,網側三次諧波含量可達(70~80)%,網側功率因數僅有0.5~0.6。

電力有源濾波器是一種能夠動態抑制諧波的新型電力電子裝置,能克服傳統LC濾波器的不足,是一種很有發展前途的諧波抑制手段。濾波器由橋式開關功率變換器和具體控制電路構成。與傳統開關電源的區別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環基準信號為電壓環誤差信號與全波整流電壓取樣信號之乘積。

2.9分布式開關電源供電系統

分布式電源供電系統采用小功率模塊和大規??刂萍呻娐纷骰静考?利用最新理論和技術成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產效率。

八十年代初期,對分布式高頻開關電源系統的研究基本集中在變換器并聯技術的研究上。八十年代中后期,隨著高頻功率變換技術的迅述發展,各種變換器拓撲結構相繼出現,結合大規模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學界的研究熱點,論文數量逐年增加,應用領域不斷擴大。

分布供電方式具有節能、可靠、高效、經濟和維護方便等優點。已被大型計算機、通信設備、航空航天、工業控制等系統逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。

3.高頻開關電源的發展趨勢

在電力電子技術的應用及各種電源系統中,開關電源技術均處于核心地位。對于大型電解電鍍電源,傳統的電路非常龐大而笨重,如果采用高頓開關電源技術,其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關電源技術,通過開關電源改變用電頻率,從而達到近于理想的負載匹配和驅動控制。高頻開關電源技術,更是各種大功率開關電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術。

3.1高頻化

理論分析和實踐經驗表明,電氣產品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設備的體積重量大體下降至工頻設計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關式整流器,都是基于這一原理。同樣,傳統"整流行業"的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據這一原理進行改造,成為"開關變換類電源",其主要材料可以節約90%或更高,還可節電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統高頻設備固態化,帶來顯著節能、節水、節約材料的經濟效益,更可體現技術含量的價值。

3.2模塊化

模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關器件和與之反并聯的續流二極管,實質上都屬于"標準"功率模塊(SPM)。近年,有些公司把開關器件的驅動保護電路也裝到功率模塊中去,構成了"智能化"功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應力(表現為過電壓、過電流毛刺)。為了提高系統的可靠性,有些制造商開發了"用戶專用"功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統的引線連接,這樣的模塊經過嚴格、合理的熱、電、機械方面的設計,達到優化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應的散熱器上,就構成一臺新型的開關電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統連線,把寄生參數降到最小,從而把器件承受的電應力降至最低,提高系統的可靠性。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統來說功率很小的冗余電源模塊,極大的提高系統可靠性,即使萬一出現單模塊故障,也不會影響系統的正常工作,而且為修復提供充分的時間。

3.3數字化

在傳統功率電子技術中,控制部分是按模擬信號來設計和工作的。在六、七十年代,電力電子技術擬電路基礎上的。但是,現在數字式信號、數字電路顯得越來越重要,數字信號處理技術日趨完善成熟,顯示出越來越多的優點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調試和遙感遙測遙調,也便于自診斷、容錯等技術的植入。所以,在八、九十年代,對于各類電路和系統的設計來說,模擬技術還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數修正(PFC)等問題的解決,離不開模擬技術的知識,但是對于智能化的開關電源,需要用計算機控制時,數字化技術就離不開了。

3.4綠色化

電源系統的綠色化有兩層含義:首先是顯著節電,這意味著發電容量的節約,而發電是造成環境污染的重要原因,所以節電就可以減少對環境的污染;其次這些電源不能(或少)對電網產生污染,國際電工委員會(IEC)對此制定了一系列標準,如IEC555、IEC917、IECl000等。事實上,許多功率電子節電設備,往往會變成對電網的污染源:向電網注入嚴重的高次諧波電流,使總功率因數下降,使電網電壓耦合許多毛刺尖峰,甚至出現缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數的方法。

總而言之,電力電子及開關電源技術因應用需求不斷向前發展,新技術的出現又會使許多應用產品更新換代,還會開拓更多更新的應用領域。開關電源高頻化、模塊化、數字化、綠色化等的實現,將標志著這些技術的成熟,實現高效率用電和高品質用電相結合。這幾年,隨著通信行業的發展,以開關電源技術為核心的通信用開關電源,僅國內有20多億人民幣的市場需求,吸引了國內外一大批科技人員對其進行開發研究。開關電源代替線性電源和相控電源是大勢所趨,因此,同樣具有幾十億產值需求的電力操作電源系統的國內市場正在啟動,并將很快發展起來。還有其它許多以開關電源技術為核心的專用電源、工業電源正在等待著人們去開發。

參考文獻:

[1]林渭勛:淺談半導體高頻電力電子技術,電力電子技術選編,浙江大學,384-390,1992。

[2]季幼章:迎接知識經濟時代,發展電源技術應用,電源技術應用,N0.2,l998。

篇12

綜觀人類社會發展的文明史,一切生產方式和生活方式的重大變革都是由于新的科學發現和新技術的產生而引發的,科學技術作為革命的力量,推動著人類社會向前發展。從50多年前晶體管的發明到目前微電子技術成為整個信息社會的基礎和核心的發展歷史充分證明了“科學技術是第一生產力”。信息是客觀事物狀態和運動特征的一種普遍形式,與材料和能源一起是人類社會的重要資源,但對它的利用卻僅僅是開始。當前面臨的信息革命以數字化和網絡化作為特征。數字化大大改善了人們對信息的利用,更好地滿足了人們對信息的需求;而網絡化則使人們更為方便地交換信息,使整個地球成為一個“地球村”。以數字化和網絡化為特征的信息技術同一般技術不同,它具有極強的滲透性和基礎性,它可以滲透和改造各種產業和行業,改變著人類的生產和生活方式,改變著經濟形態和社會、政治、文化等各個領域。而它的基礎之一就是微電子技術??梢院敛豢鋸埖卣f,沒有微電子技術的進步,就不可能有今天信息技術的蓬勃發展,微電子已經成為整個信息社會發展的基石。

50多年來微電子技術的發展歷史,實際上就是不斷創新的過程,這里指的創新包括原始創新、技術創新和應用創新等。晶體管的發明并不是一個孤立的精心設計的實驗,而是一系列固體物理、半導體物理、材料科學等取得重大突破后的必然結果。1947年發明點接觸型晶體管、1948年發明結型場效應晶體管以及以后的硅平面工藝、集成電路、CMOS技術、半導體隨機存儲器、CPU、非揮發存儲器等微電子領域的重大發明也都是一系列創新成果的體現。同時,每一項重大發明又都開拓出一個新的領域,帶來了新的巨大市場,對我們的生產、生活方式產生了重大的影響。也正是由于微電子技術領域的不斷創新,才能使微電子能夠以每三年集成度翻兩番、特征尺寸縮小倍的速度持續發展幾十年。自1968年開始,與硅技術有關的學術論文數量已經超過了與鋼鐵有關的學術論文,所以有人認為,1968年以后人類進入了繼石器、青銅器、鐵器時代之后硅石時代(siliconage)〖1〗。因此可以說社會發展的本質是創新,沒有創新,社會就只能被囚禁在“超穩態”陷阱之中。雖然創新作為經濟發展的改革動力往往會給社會帶來“創造性的破壞”,但經過這種破壞后,又將開始一個新的處于更高層次的創新循環,社會就是以這樣螺旋形上升的方式向前發展。

在微電子技術發展的前50年,創新起到了決定性的作用,而今后微電子技術的發展仍將依賴于一系列創新性成果的出現。我們認為:目前微電子技術已經發展到了一個很關鍵的時期,21世紀上半葉,也就是今后50年微電子技術的發展趨勢和主要的創新領域主要有以下四個方面:以硅基CMOS電路為主流工藝;系統芯片(SystemOnAChip,SOC)為發展重點;量子電子器件和以分子(原子)自組裝技術為基礎的納米電子學;與其他學科的結合誕生新的技術增長點,如MEMS,DNAChip等。

221世紀上半葉仍將以硅基CMOS電路為主流工藝

微電子技術發展的目標是不斷提高集成系統的性能及性能價格比,因此便要求提高芯片的集成度,這是不斷縮小半導體器件特征尺寸的動力源泉。以MOS技術為例,溝道長度縮小可以提高集成電路的速度;同時縮小溝道長度和寬度還可減小器件尺寸,提高集成度,從而在芯片上集成更多數目的晶體管,將結構更加復雜、性能更加完善的電子系統集成在一個芯片上;此外,隨著集成度的提高,系統的速度和可靠性也大大提高,價格大幅度下降。由于片內信號的延遲總小于芯片間的信號延遲,這樣在器件尺寸縮小后,即使器件本身的性能沒有提高,整個集成系統的性能也可以得到很大的提高。

自1958年集成電路發明以來,為了提高電子系統的性能,降低成本,微電子器件的特征尺寸不斷縮小,加工精度不斷提高,同時硅片的面積不斷增大。集成電路芯片的發展基本上遵循了Intel公司創始人之一的GordonE.Moore1965年預言的摩爾定律,即每隔三年集成度增加4倍,特征尺寸縮小倍。在這期間,雖然有很多人預測這種發展趨勢將減緩,但是微電子產業三十多年來發展的狀況證實了Moore的預言[2]。而且根據我們的預測,微電子技術的這種發展趨勢還將在21世紀繼續一段時期,這是其它任何產業都無法與之比擬的。

現在,0.18微米CMOS工藝技術已成為微電子產業的主流技術,0.035微米乃至0.020微米的器件已在實驗室中制備成功,研究工作已進入亞0.1微米技術階段,相應的柵氧化層厚度只有2.0~1.0nm。預計到2010年,特征尺寸為0.05~0.07微米的64GDRAM產品將投入批量生產。

21世紀,起碼是21世紀上半葉,微電子生產技術仍將以尺寸不斷縮小的硅基CMOS工藝技術為主流。盡管微電子學在化合物和其它新材料方面的研究取得了很大進展;但還不具備替代硅基工藝的條件。根據科學技術的發展規律,一種新技術從誕生到成為主流技術一般需要20到30年的時間,硅集成電路技術自1947年發明晶體管1958年發明集成電路,到60年代末發展成為大產業也經歷了20多年的時間。另外,全世界數以萬億美元計的設備和技術投入,已使硅基工藝形成非常強大的產業能力;同時,長期的科研投入已使人們對硅及其衍生物各種屬性的了解達到十分深入、十分透徹的地步,成為自然界100多種元素之最,這是非常寶貴的知識積累。產業能力和知識積累決定了硅基工藝起碼將在50年內仍起重要作用,人們不會輕易放棄。

目前很多人認為當微電子技術的特征尺寸在2015年達到0.030~0.015微米的“極限”之后,將是硅技術時代的結束,這實際上是一種誤解。且不說微電子技術除了以特征尺寸為代表的加工工藝技術之外,還有設計技術、系統結構等方面需要進一步的大力發展,這些技術的發展必將使微電子產業繼續高速增長。即使是加工工藝技術,很多著名的微電子學家也預測,微電子產業將于2030年左右步入像汽車工業、航空工業這樣的比較成熟的朝陽工業領域。即使微電子產業步入汽車、航空等成熟工業領域,它仍將保持快速發展趨勢,就像汽車、航空工業已經發展了50多年仍極具發展潛力一樣。

隨著器件的特征尺寸越來越小,不可避免地會遇到器件結構、關鍵工藝、集成技術以及材料等方面的一系列問題,究其原因,主要是:對其中的物理規律等科學問題的認識還停留在集成電路誕生和發展初期所形成的經典或半經典理論基礎上,這些理論適合于描述微米量級的微電子器件,但對空間尺度為納米量級、空間尺度為飛秒量級的系統芯片中的新器件則難以適用;在材料體系上,SiO2柵介質材料、多晶硅/硅化物柵電極等傳統材料由于受到材料特性的制約,已無法滿足亞50納米器件及電路的需求;同時傳統器件結構也已無法滿足亞50納米器件的要求,必須發展新型的器件結構和微細加工、互連、集成等關鍵工藝技術。具體的需要創新和重點發展的領域包括:基于介觀和量子物理基礎的半導體器件的輸運理論、器件模型、模擬和仿真軟件,新型器件結構,高k柵介質材料和新型柵結構,電子束步進光刻、13nmEUV光刻、超細線條刻蝕,SOI、GeSi/Si等與硅基工藝兼容的新型電路,低K介質和Cu互連以及量子器件和納米電子器件的制備和集成技術等。

3量子電子器件(QED)和以分子原子自組裝技術為基礎的納米電子學將帶來嶄新的領域

在上節我們談到的以尺寸不斷縮小的硅基CMOS工藝技術,可稱之為“scalingdown”,與此同時我們必須注意“bottomup”?!癰ottomup”最重要的領域有二個方面:

(1)量子電子器件(QED—QuantumElectronDevice)這里包括單電子器件和單電子存儲器等。它的基本原理是基于庫侖阻塞機理控制一個或幾個電子運動,由于系統能量的改變和庫侖作用,一個電子進入到一個勢阱,則將阻止其它電子的進入。在單電子存儲器中量子阱替代了通常存儲器中的浮柵。它的主要優點是集成度高;由于只有一個或幾個電子活動所以功耗極低;由于相對小的電容和電阻以及短的隧道穿透時間,所以速度很快;且可用于多值邏輯和超高頻振蕩。但它的問題是制造比較困難,特別是制造大量的一致性器件很困難;對環境高度敏感,可靠性難以保證;在室溫工作時要求電容極小(αF),要求量子點大小在幾個納米。這些都為集成成電路帶來了很大困難。

因此,目前可以認為它們的理論是清楚的,工藝有待于探索和突破。

(2)以原子分子自組裝技術為基礎的納米電子學。這里包括量子點陣列(QCA—Quantum-dotCellularAutomata)和以碳納米管為基礎的原子分子器件等。

量子點陣列由量子點組成,至少由四個量子點,它們之間以靜電力作用。根據電子占據量子點的狀態形成“0”和“1”狀態。它在本質上是一種非晶體管和無線的方式達到陣列的高密度、低功耗和實現互連。其基本優勢是開關速度快,功耗低,集成密度高。但難以制造,且對值置變化和大小改變都極為靈敏,0.05nm的變化可以造成單元工作失效。

以碳納米管為基礎的原子分子器件是近年來快速發展的一個有前景的領域。碳原子之間的鍵合力很強,可支持高密度電流,而熱導性能類似于金剛石,能在高集成度時大大減小熱耗散,性質類金屬和半導體,特別是它有三種可能的雜交態,而Ge、Si只有一個。這些都使碳納米管(CNT)成為當前科研熱點,從1991年發現以來,現在已有大量成果涌現,北京大學納米中心彭練矛教授也已制備出0.33納米的CNT并提出“T形結”作為晶體管的可能性。但是問題是如何去生長有序的符合設計性能的CNT器件,更難以集成。

目前“bottomup”的量子器件和以自組裝技術為基礎的納米器件在制造工藝上往往與“Scalingdown”的加工方法相結合以制造器件。這對于解決高集成度CMOS電路的功耗制約將會帶來突破性的進展。

QCA和CNT器件不論在理論上還是加工技術上都有大量工作要做,有待突破,離開實際應用還需較長時日!但這終究是一個誘人探索的領域,我們期待它們將創出一個新的天地。

4系統芯片(SystemOnAChip)是21世紀微電子技術發展的重點

在集成電路(IC)發展初期,電路設計都從器件的物理版圖設計入手,后來出現了集成電路單元庫(Cell-Lib),使得集成電路設計從器件級進入邏輯級,這樣的設計思路使大批電路和邏輯設計師可以直接參與集成電路設計,極大地推動了IC產業的發展。但集成電路僅僅是一種半成品,它只有裝入整機系統才能發揮它的作用。IC芯片是通過印刷電路板(PCB)等技術實現整機系統的。盡管IC的速度可以很高、功耗可以很小,但由于PCB板中IC芯片之間的連線延時、PCB板可靠性以及重量等因素的限制,整機系統的性能受到了很大的限制。隨著系統向高速度、低功耗、低電壓和多媒體、網絡化、移動化的發展,系統對電路的要求越來越高,傳統集成電路設計技術已無法滿足性能日益提高的整機系統的要求。同時,由于IC設計與工藝技術水平提高,集成電路規模越來越大,復雜程度越來越高,已經可以將整個系統集成為一個芯片。目前已經可以在一個芯片上集成108-109個晶體管,而且隨著微電子制造技術的發展,21世紀的微電子技術將從目前的3G時代逐步發展到3T時代(即存儲容量由G位發展到T位、集成電路器件的速度由GHz發展到燈THz、數據傳輸速率由Gbps發展到Tbps,注:1G=109、1T=1012、bps:每秒傳輸數據位數)。

正是在需求牽引和技術推動的雙重作用下,出現了將整個系統集成在一個微電子芯片上的系統芯片(SystemOnAChip,簡稱SOC)概念。

系統芯片(SOC)與集成電路(IC)的設計思想是不同的,它是微電子設計領域的一場革命,它和集成電路的關系與當時集成電路與分立元器件的關系類似,它對微電子技術的推動作用不亞于自50年代末快速發展起來的集成電路技術。

SOC是從整個系統的角度出發,把處理機制、模型算法、芯片結構、各層次電路直至器件的設計緊密結合起來,在單個(或少數幾個)芯片上完成整個系統的功能,它的設計必須是從系統行為級開始的自頂向下(Top-Down)的。很多研究表明,與IC組成的系統相比,由于SOC設計能夠綜合并全盤考慮整個系統的各種情況,可以在同樣的工藝技術條件下實現更高性能的系統指標。例如若采用SOC方法和0.35μm工藝設計系統芯片,在相同的系統復雜度和處理速率下,能夠相當于采用0.18~0.25μm工藝制作的IC所實現的同樣系統的性能;還有,與采用常規IC方法設計的芯片相比,采用SOC設計方法完成同樣功能所需要的晶體管數目約可以降低l~2個數量級。

對于系統芯片(SOC)的發展,主要有三個關鍵的支持技術。

(1)軟、硬件的協同設計技術。面向不同系統的軟件和硬件的功能劃分理論(FunctionalPartitionTheory),這里不同的系統涉及諸多計算機系統、通訊系統、數據壓縮解壓縮和加密解密系統等等。

(2)IP模塊庫問題。IP模塊有三種,即軟核,主要是功能描述;固核,主要為結構設計;和硬核,基于工藝的物理設計、與工藝相關,并經過工藝驗證過的。其中以硬核使用價值最高。CMOS的CPU、DRAM、SRAM、E2PROM和FlashMemory以及A/D、D/A等都可以成為硬核。其中尤以基于深亞微米的新器件模型和電路模擬為基礎,在速度與功耗上經過優化并有最大工藝容差的模塊最有價值?,F在,美國硅谷在80年代出現無生產線(Fabless)公司的基礎上,90年代后期又出現了一些無芯片(Chipless)的公司,專門銷售IP模塊。

(3)模塊界面間的綜合分析技術,這主要包括IP模塊間的膠聯邏輯技術(gluelogictechnologies)和IP模塊綜合分析及其實現技術等。

微電子技術從IC向SOC轉變不僅是一種概念上的突破,同時也是信息技術新發展的里程碑。通過以上三個支持技術的創新,它必將導致又一次以系統芯片為主的信息技術上的革命。目前,SOC技術已經嶄露頭角,21世紀將是SOC技術真正快速發展的時期。

在新一代系統芯片領域,需要重點突破的創新點主要包括實現系統功能的算法和電路結構兩個方面。在微電子技術的發展歷史上,每一種算法的提出都會引起一場變革,例如維特比算法、小波變換等均對集成電路設計技術的發展起到了非常重要的作用,目前神經網絡、模糊算法等也很有可能取得較大的突破。提出一種新的電路結構可以帶動一系列的應用,但提出一種新的算法則可以帶動一個新的領域,因此算法應是今后系統芯片領域研究的重點學科之一。在電路結構方面,在系統芯片中,由于射頻、存儲器件的加入,其中的電路結構已經不是傳統意義上的CMOS結構,因此需要發展更靈巧的新型電路結構。另外,為了實現膠聯邏輯(GlueLogic)新的邏輯陣列技術有望得到快速的發展,在這一方面也需要做系統深入的研究。

5微電子與其他學科的結合誕生新的技術增長點

微電子技術的強大生命力在于它可以低成本、大批量地生產出具有高可靠性和高精度的微電子結構模塊。這種技術一旦與其它學科相結合,便會誕生出一系列嶄新的學科和重大的經濟增長點,這方面的典型例子便是MEMS(微機電系統)技術和DNA生物芯片。前者是微電子技術與機械、光學等領域結合而誕生的,后者則是與生物工程技術結合的產物。

微電子機械系統不僅是微電子技術的拓寬和延伸,它將微電子技術和精密機械加工技術相互融合,實現了微電子與機械融為一體的系統。MEMS將電子系統和外部世界聯系起來,它不僅可以感受運動、光、聲、熱、磁等自然界的外部信號,把這些信號轉換成電子系統可以認識的電信號,而且還可以通過電子系統控制這些信號,發出指令并完成該指令。從廣義上講,MEMS是指集微型傳感器、微型執行器、信號處理和控制電路、接口電路、通信系統以及電源于一體的微型機電系統。MEMS技術是一種典型的多學科交叉的前沿性研究領域,它幾乎涉及到自然及工程科學的所有領域,如電子技術、機械技術、光學、物理學、化學、生物醫學、材料科學、能源科學等〖3〗。

MEMS的發展開辟了一個全新的技術領域和產業。它們不僅可以降低機電系統的成本,而且還可以完成許多大尺寸機電系統所不能完成的任務。正是由于MEMS器件和系統具有體積小、重量輕、功耗低、成本低、可靠性高、性能優異及功能強大等傳統傳感器無法比擬的優點,因而MEMS在航空、航天、汽車、生物醫學、環境監控、軍事以及幾乎人們接觸到的所有領域中都有著十分廣闊的應用前景。例如微慣性傳感器及其組成的微型慣性測量組合能應用于制導、衛星控制、汽車自動駕駛、汽車防撞氣囊、汽車防抱死系統(ABS)、穩定控制和玩具;微流量系統和微分析儀可用于微推進、傷員救護;信息MEMS系統將在射頻系統、全光通訊系統和高密度存儲器和顯示等方面發揮重大作用;同時MEMS系統還可以用于醫療、光譜分析、信息采集等等。現在已經成功地制造出了尖端直徑為5μm的可以夾起一個紅細胞的微型鑷子,可以在磁場中飛行的象蝴蝶大小的飛機等。

MEMS技術及其產品的增長速度非常之高,目前正處在技術發展時期,再過若干年將會迎來MEMS產業化高速發展的時期。2000年,全世界MEMS的市場達到120到140億美元,而帶來的與之相關的市場達到1000億美元。

目前,MEMS系統與集成電路發展的初期情況極為相似。集成電路發展初期,其電路在今天看來是很簡單的,應用也非常有限,以軍事需求為主,但它的誘人前景吸引了人們進行大量投資,促進了集成電路飛速發展。集成電路技術的進步,加快了計算機更新換代的速度,對CPU和RAM的需求越來越大,反過來又促進了集成電路的發展。集成電路和計算機在發展中相互推動,形成了今天的雙贏局面,帶來了一場信息革命。現階段的微機電系統專用性很強,單個系統的應用范圍非常有限,還沒有出現類似于CPU和RAM這樣量大面廣的產品。隨著微機電系統的進步,最后將有可能形成像微電子技術一樣有廣泛應用前景的新產業,從而對人們的社會生產和生活方式產生重大影響。

當前MEMS系統能否取得更更大突破,取決于兩方面的因素:第一是在微系統理論與基礎技術方面取得突破性進展,使人們依靠掌握的理論和基礎技術可以高效地設計制造出所需的微系統;第二是找準應用突破口,揚長避短,以特別適合微系統應用的重大領域為目標進行研究,取得突破,從而帶動微系統產業的發展。在MEMS發展中需要繼續解決的問題主要有:MEMS建模與設計方法學研究;三維微結構構造原理、方法、仿真及制造;微小尺度力學和熱學研究;MEMS的表征與計量方法學;納結構與集成技術等。

微電子與生物技術緊密結合誕生的以DNA芯片等為代表的生物芯片將是21世紀微電子領域的另一個熱點和新的經濟增長點。它是以生物科學為基礎,利用生物體、生物組織或細胞等的特點和功能,設計構建具有預期性狀的新物種或新品系,并與工程技術相結合進行加工生產,它是生命科學與技術科學相結合的產物。具有附加值高、資源占用少等一系列特點,正日益受到廣泛關注。目前最有代表性的生物芯片是DNA芯片。

采用微電子加工技術,可以在指甲蓋大小的硅片上制作出包含有多達萬種DNA基因片段的芯片。利用這種芯片可以在極快的時間內檢測或發現遺傳基因的變化等情況,這無疑對遺傳學研究、疾病診斷、疾病治療和預防、轉基因工程等具有極其重要的作用。

DNA芯片的基本思想是通過生物反應或施加電場等措施使一些特殊的物質能夠反映出某種基因的特性從而起到檢測基因的目的。目前Stanford和Affymetrix公司的研究人員已經利用微電子技術在硅片或玻璃片上制作出了DNA芯片〖4〗。他們制作的DNA芯片是通過在玻璃片上刻蝕出非常小的溝槽,然后在溝槽中覆蓋一層DNA纖維。不同的DNA纖維圖案分別表示不同的DNA基因片段,該芯片共包括6000余種DNA基因片段。DNA(脫氧核糖核酸)是生物學中最重要的一種物質,它包含有大量的生物遺傳信息,DNA芯片的作用非常巨大,其應用領域也非常廣泛:它不僅可以用于基因學研究、生物醫學等,而且隨著DNA芯片的發展還將形成微電子生物信息系統,這樣該技術將廣泛應用到農業、工業、醫學和環境保護等人類生活的各個方面,那時,生物芯片有可能象今天的IC芯片一樣無處不在。

目前的生物芯片主要是指通過平面微細加工技術及超分子自組裝技術,在固體芯片表面構建的微分析單元和系統,以實現對化合物、蛋白質、核酸、細胞以及其它生物組分的準確、快速、大信息量的篩選或檢測。生物芯片的主要研究包括采用生物芯片的具體實現技術、基于生物芯片的生物信息學以及高密度生物芯片的設計、檢測方法學等等。

6結語

在微電子學發展歷程的前50年中,創新和基礎研究曾起到非常關鍵的決定性作用。而隨著器件特征尺寸的縮小、納米電子學的出現、新一代SOC的發展、MEMS和DNA芯片的崛起,又提出了一系列新的課題,客觀需求正在“召喚”創新成果的誕生。

回顧20世紀后50年,展望21世紀前50年,即百年的微電子科學技術發展歷程,使我們深切地感受到,世紀之交的微電子技術對我們既是一個重大的機遇,也是一個嚴峻的挑戰,如果我們能夠抓住這個機遇,立足創新,去勇敢地迎接這個挑戰,則有可能使我國微電子技術實現騰飛,在新一代微電子技術中擁有自己的知識產權,促進我國微電子產業的發展,為迎接21世紀中葉將要到來的偉大的民族復興奠定技術基礎,以重鑄中華民族的輝煌!

參考文獻

[1]S.M.SZE:LecturenoteatPekingUniversity,FourDecadesofDevelopmentsinMicroelectronics:Achievementsandchallenges.

[2]BobSchaller.TheOrigin,Natureandlmplicationof“Moore’sLaw”,.1996.

[3]張興、郝一龍、李志宏、王陽元。跨世紀的新技術-微電子機械系統。電子科技導報,1999,4:2

篇13

主要建設措施

為了重點培養三種核心專業能力,體現鮮明的專業特色,我們采取了如下主要建設措施。主動培育專業特色對于專業建設,系主任不但要組織制定和完善專業人才培養方案,組織專業教學方案的實施,同時更應注意多層次、多途徑進行專業精神的培養,注意系風的培養,要主動凝練、引導和培育專業特色。加強教學內容改革和教材建設對于教學內容的改革,不但要注意不同課程之間的內容銜接,還要避免不同課程之間內容的重復,同時要積極將新理論和新技術引入教學,更新陳舊內容,大膽開設新課程。加強核心專業能力的培養充分利用和開發各種實踐教學資源,提出了學校教學實驗室+學校實訓基地+學生宿舍實驗室+校外產學研基地的實踐教學體系。我們逐步建立以綜合性、設計性、應用性和研究探討性為培養目標,以算法—設計—實現為實踐教學思路,以興趣小組、課題研究和電子設計競賽為實踐教學的主要形式,以現代電子設計技術的多種實現平臺:FPGA/CPLD、EMCU、EDSP、SoC為電子系統實現手段的電子信息科學與技術專業的創新實踐教學體系,以加強核心專業能力的培養。實行差異化教學注意優才優教為了提高大眾化高等教育的質量,更好地滿足市場經濟條件下對人才要求,按一般水平完成大學基本教育的同時,應根據學生和社會的需要,對優秀和比較優秀的學生,根據這些學生的興趣愛好及特長,進行針對性的加深與擴展,實現優才優教。加強職業規劃全程教育與引導一個專業的健康良性發展,不但要注意專業的建設與管理,同時更要注重已有建設成果的示范和引領作用,特別是新專業的建設。我們高度關注學生的考研與就業,注意人才培養的示范作用和引領作用,以激發學生的學習積極性、主動性和能動性,以促進專業發展的良性循環。

主要建設成果