本書自1970年初版以來,不斷修訂再版,以其經典性和性成為有關時間序列分析領域書籍的典范。書中涉及時間序列(統計)模型的建立及許多重要的應用領域的使用,包括預測,模型的描述、估計、識別和診斷,動態關系的傳遞函數的識別、擬合及檢驗,干預事件影響的建模和過程控制等專題。本書敘述簡明,強調實際技術,配有大量實例。
本書可作為統計和相關專業高年級本科生或研究生教材,也可以作為統計專業技術人員的參考書。
時間序列分析是一門實用性很強、蓬勃發展的數據分析技術,現在廣泛地應用于工業質量控制、生物基因工程和金融數據分析等諸多領域。而這一切的發展不能不提到G.E.P.BOX和G.M.JE-NKINS以及二人合著的早于1970年出版的《時間序列分析——預測與控制》。由于二位對時間序列數據分析的巨大貢獻,大家將本書提出的ARIMA模型命名為BOX-JENKINS模型。
在這本時間序列分析經典之作中,幾位統計大家用極其通俗的語言,運用大量的實例,深入淺出而又形象地闡明時間序列分析的精髓,使讀者免去過多繁雜的數學公式推導證明,而很快掌握實踐的技巧,體會其中直觀而深刻的思想。相信每一位研讀此書的讀者都會獲益匪淺。
George E.P.Box 國際級統計學家。曾于1960年創立威斯康星大學統計系并任該系主任,現為該校名譽教授。BOX發表過200多篇論文,出版過很多重要著作,其中本書和STATISTICE FOR EXPERIMENTERS為其代表作。 Gwilym M.Jenkins 已故國際級統計學家。曾于1966年創立了英國
1 INTRODUCTION 1
1.1 Four Important Practical Problems 2
1.1.1 Forecasting Time Series 2
1.1.2 Estimation of Transfer Functions 3
1.1.3 Analysis of Effects of Unusual Intervention Events To a System 4
1.1.4 Discrete Control Systems 5
1.2 Stochastic and Deterministic Dynamic Mathematical Models 7
1.2.1 Stationary and Nonstationary Stochastic Models for Forecasting and Control 7
1.2.2 Transfer Function Models 12
1.2.3 Models for Discrete Control Systems 14
1.3 Basic Ideas in Model Building 16
1.3.1 Parsimony 16
1.3.2 Iterative Stages in the Selection of a Model 16
Part I Stochastic Models and Their Forecasting 19
2 AUTOCORRELATION FUNCTION AND SPECTRUM OF STATIONARY PROCESSES 21
2.1 Autocorrelation Properties of Stationary Models 21
2.1.1 Time Series and Stochastic Processes 21
2.1.2 Stationary Stochastic Processes 23
2.1.3 Positive Definiteness and the Autocovariance Matrix 26
2.1.4 Autocovariance and Autocorrelation Functions 29
2.1.5 Estimation of Autocovariance and Autocorrelation Functions 30
2.1.6 Standard Error of Autocorrelation Estimates 32
2.2 Spectral Properties of Stationary Models 35
2.2.1 Periodogram of a Time Series 35
2.2.2 Analysis of Variance 36
2.2.3 Spectrum and Spectral Density Function 37
2.2.4 Simple Examples of Autocorrelation and Spectral Density Functions 41
2.2.5 Advantages and Disadvantages of the Autocorrelation and Spectral Density Functions 43
A2.1 Link Between the Sample Spectrum and Autocovariance Function Estimate 44
3 LINEAR STATIONARY MODELS 46
3.1 General Linear Process 46
3.1.1 Two Equivalent Forms for the Linear Process 46
3.1.2 Autocovariance Generating Function of a Linear Process 49
3.1.3 Stationarity and Invertibility Conditions for a Linear Process 50
3.1.4 Autoregressive and Moving Average Processes 52
3.2 Autoregressive Processes 54
3.2.1 Stationarity Conditions for Autoregressive Processes 54
3.2.2 Autocorrelation Function and Spectrum of Autoregressiue Processes 55
3.2.3 First-Order Autoregressive (Markov) Process 58
3.2.4 Second-Order Autoregressive Process 60
3.2.5 Partial Autocorrelation Function 64
3.2.6 Estimation of the Partial Autocorrelation Function 67
3.2.7 Standard Errors of Partial Autocorrelation Estimates 68
3.3 Moving Average Processes 69
3.3.1 Invertibility Conditions for Moving Average Processes 69
3.3.2 Autocorrelation Function and Spectrum of Moving Average Processes 70
3.3.3 First-Order Moving Average Process 72
3.3.4 Second-Order Moving Average Process 73
3.3.5 Duality Between Autoregressive and Moving Average Processes 75
3.4 Mixed Autoregressive-Moving Average Processes 77
3.4.1 Stationarity and Invertibility Properties 77
3.4.2 Autocorrelation Function and Spectrum of Mixed Processes 78
3.4.3 First-Order Autoregressive-First-Order Moving Average Process 80
3.4.4 Summary 83
A3.1 Autocovariances Autocovariance Generating Function and Stationarity Conditions for a General Linear Process 85
A3.2 Recursive Method for Calculating Estimates of Autoregressive Parameters 87
4 LINEAR NONSTATIONARY MODELS 89
4.1 Autoregressive Integrated Moving Average Processes 89
4.1.1 Nonstationary First-Order Autoregressive Process 89
4.1.2 General Model for a Nonstationary Process Exhibiting Homogeneity 92
4.1.3 General Form of the Autoregressive Integrated Moving Average Process 96
4.2 Three Explicit Forms for the Autoregressive Integrated Moving Average Model 99
4.2.1 Difference Equation Form of the Model 99
4.2.2 Random Shock Form of the Model I00
4.2.3 Inverted Form of the Model 106
4.3 Integrated Moving Average Processes 109
4.3.1 Integrated Moving Average Process of Order (0,1,1) 110
4.3.2 Integrated Moving Average Process of Order (0,2,2) 114
4.3.3 General Integrated Moving Average Process of Order (0,d,q) 118
A4.1 Linear Difference Equations 120
A4.2 IMA(0,1,1) Process With Deterministic Drift 125
A4.3 ARIMA Processes With Added Noise 126
A4.3.1 Sum of Two Independent Moving Average Processes 126
A4.3.2 Effect of Added Noise on the General Model 127
A4.3.3 Example for an IMA(O,1,1) Process with Added White Noise 128
A4.3.4 Relation Between the IMA(O,1,1) Process and a Random Walk 129
A4.3.5 Autocovariance Function of the General Model with Added Correlated Noise 129
5 FORECASTING 131
5.1 Minimum Mean Square Error Forecasts and Their Properties 131
5.1.1 Derivation of the Minimum Mean Square Error Forecasts 133
5.1.2 Three Basic Forms for the Forecast 135
5.2 Calculating and Updating Forecasts 139
5.2.1 Convenient Format for the Forecasts 139
5.2.2 Calculation of the ψ Weights 139
5.2.3 Use of the ψ Weights in Updating the Forecasts 141
5.2.4 Calculation of the Probability Limits of the Forecasts at Any Lead Time 142
5.3 Forecast Function and Forecast Weights 145
5.3.1 Eventual Forecast Function Determined by the Autoregressive Operator 146
5.3.2 Role of the Mooing Average Operator in Fixing the Initial Values 147
5.3.3 Lead l Forecast Weights 148
5.4 Examples of Forecast Functions and Their Updating 151
5.4.1 Forecasting an IMA(O,1,1) Process 151
5.4.2 Forecasting an IMA(O,2,2) Process 154
5.4.3 Forecasting a General IMA(O,d,q) Process 156
5.4.4 Forecasting Autoregressive Processes 157
5.4.5 Forecasting a (1,O,1) Process 160
5.4.6 Forecasting a (1,1,1) Process 162
5.5 Use of State Space Model Formulation for Exact Forecasting 163
5.5.1 State Space Model Representation for the ARIMA Process 163
5.5.2 Kalman Filtering Relations for Use in Prediction 164
5.6 Summary 166
A5.1 Correlations Between Forecast Errors 169
A5.1.1 Autocorrelation Function of Forecast Errors at Different Origins 169
A5.1.2 Correlation Between Forecast Errors at the Same Origin with Different Lead Times 170
A5.2 Forecast Weights for Any Lead Time 172
A5.3 Forecasting in Terms of the General Integrated Form 174
A5.3.1 General Method of Obtaining the Integrated Form 174
A5.3.2 Updating the General Integrated Form 176
A5.3.3 Comparison with the Discounted Least Squares Method 176
Part II Stochastic Model Building 181
6 MODELDENTIFICATION 183
6.l Objectives of Identification 183
6.1.1 Stages in the Identification Procedure 184
6.2 Identification Techniques 184
6.2.1 Use of the Autocorrelation and Partial Autocorrelation Functions in Identification 184
6.2.2 Standard Errors for Estimated Autocorrelations and Partial Autocorrelations 188
6.2.3 Identification of Some Actual Time Series 188
6.2.4 Some Additional Model Identification Tools 197
6.3 Initial Estimates for the Parameters 202
6.3.1 Uniqueness of Estimates Obtained from the Autocovariance Function 202
6.3.2 Initial Estimates for Moving Average Processes 202
6.3.3 Initial Estimates for Autoregressive Processes 204
6.3.4 Initial Estimates for Mixed Autoregressive-Moving Average Processes 206
6.3.5 Choice Between Stationary and Nonstationary Models in Doubtful Cases 207
6.3.6 More Formal Tests for Unit Roots in ARIMA Models 208
6.3.7 Initial Estimate of Residual Variance 211
6.3.8 Approximate Standard Error for 212
6.4 Model Multiplicity 214
6.4.1 Multiplicity of Autoregressive-Moving Average Models 214
6.4.2 Multiple Moment Solutions for Moving Average Parameters 216
6.4.3 Use of the Backward Process to Determine Starting Values 218
A6.1 Expected Behavior of the Estimated Autocorrelation Function for a Nonstationary Process 218
A6.2 General Method for Obtaining Initial Estimates of the Parameters of a Mixed Autoregressive-Moving Average Process 220
7 MODELESTIMATION 224
7.l Study of the Likelihood and Sum of Squares Functions 224
7.1.1 Likelihood Function 224
7.1.2 Conditional Likelihood for an ARIMA Process 226
7.1.3 Choice of Starting Values for Conditional Calculation 227
7.1.4 Unconditional Likelihood; Sum of Squares Function; Least Squares Estimates 228
7.1.5 General Procedure for Calculating the Unconditional Sum of Squares 233
7.1.6 Graphical Study of the Sum of Squares Function 238
7.1.7 Description of"Well-Behaved" Estimation Situations; Confidence Regions 241
7.2 Nonlinear Estimation 248
7.2.1 General Method of Approach 248
7.2.2 Numerical Estimates of the Derivatives 249
7.2.3 Direct Evaluation of the Derivatives 251
7.2.4 General Least Squares Algorithm for the Conditional Model 252
7.2.5 Summary of Models Fitted to Series A to F 255
7.2.6 Large-Sample Information Matrices and Covariance Estimates 256
7.3 Some Estimation Results for Specific Models 259
7.3.1 Autoregressive Processes 260
7.3.2 Moving Average Processes 262
7.3.3 Mixed Processes 262
7.3.4 Separation of Linear and Nonlinear Components in Estimation 263
7.3.5 Parameter Redundancy 264
7.4 Estimation Using Bayes' Theorem 267
7.4.1 Bayes' Theorem 267
7.4.2 Bayesian Estimation of Parameters 269
7.4.3 Autoregressive Processes 270
7.4.4 Moving Average Processes 272
7.4.5 Mixed processes 274
7.5 Likelihood Function Based on The State Space Model 275
A7.1 Review of Normal Distribution Theory 279
A7.1.1 Partitioning of a Positive-Definite Quadratic Form 279
A7.1.2 Two Useful Integrals 280
A7.1.3 Normal Distribution 281
A7.1.4 Student's t-Distribution 283
A7.2 Review of Linear Least Squares Theory 286
A7.2.1 Normal Equations 286
A7.2.2 Estima
看起來不錯
Have not got it. I hope it would be awesome